ANN - Multi-layer Perceptron Regressor (MLPRegressor)

e 1 Loading the libraries and data
e 2 Data pre-processing

o 3 MLPRegressor

e 4 Model Evaluation

e 5 Hyper Parameter Tuning

1 Loading the libraries and data

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler

from sklearn.neural network import MLPRegressor
from sklearn import metrics

from sklearn.model selection import GridSearchCV
df = pd.read csv('house prices.csv')

df = df.drop(['id', 'date', 'yr built', 'yr renovated', 'zipcode',6 'lat',
'long'], axis=1l)

df

price bedrooms bathrooms sqft_living sqft_lot floors waterfront view condition grade sqft_above sqft_basement sqft_living15 sqft_lot15

0 221900.0 3 1.00 1180 5650 1.0 0 0 3 7 1180 0 1340 5650

1 5380000 3 225 2570 7242 20 0 0 3 7 2170 400 1690 7639

2 180000.0 2 1.00 770 10000 1.0 0 0 3 6 770 0 2720 8062

3 604000.0 4 3.00 1660 5000 10 0 0 5 7 1050 910 1360 5000

4 510000.0 3 2.00 1680 8080 1.0 0 0 3 8 1680 0 1800 7503
21608 360000.0 3 250 1530 1131 30 0 0 3 8 1530 0 1530 1509
21609 400000.0 4 2.50 2310 5813 2.0 0 0 3 8 2310 0 1830 7200
21610 402101.0 2 075 1020 1350 20 0 0 3 7 1020 0 1020 2007
21611 400000.0 3 2.50 1600 2388 2.0 0 0 3 8 1600 0 1410 1287
21612 325000.0 2 0.75 1020 1076 2.0 0 0 3 7 1020 0 1020 1357

21613 rows x 14 columns

2 Data pre-processing

x = df.drop('price', axis=l)
y df['price']

trainX, testX, trainY, testY = train test split(x, y, test size = 0.2)
sc=StandardScaler ()

scaler =
trainX scaled =
testX scaled =

3 MLPRegressor

mlp reg = MLPRegressor (hidden layer sizes=(150,100,50),
300, activation =
'adam')

sc.fit (trainX)
scaler.transform(trainX)
scaler.transform(testX)

max_iter
solver =

mlp reg.fit(trainX scaled, trainY)

4 Model Evaluation

y_pred = mlp reg.predict (testX scaled)
df temp = pd.DataFrame ({'Actual':

df temp.head()

df temp =

df temp.head(30)

'relu',

'Predicted': y pred})

testy,
Actual Predicted
15868 570000.0 1.153772e+06
13655 201000.0 2.45344%e+05
9646 4300000 4.544849e+05
12734 335000.0 4.060725e+05
16525 1980000.0 1.684505e+06

df temp.plot (kind='bar', figsize=(10,6))

plt.grid(which="major"',
plt.grid(which="'minor',

plt.show ()

2500000

2000000

1500000

1000000

500000

linestyle='-",
linestyle="':",

linewidth='0.5",
linewidth='0.5",

color='"green')
color="black")

28
® @
a9

v

$2ag

gl‘«mﬂ"
A48

w
—
~
=}
]

9598
798
5236

9232

389
16108
4013

14124

3519

10139

17280

17730

20854

9709
4680

10477

18056
17953

. Actual
W Predicted

2346
20030
7620
6600

14075

print ('Mean Absolute Error:', metrics.mean absolute error(testY, y pred))
print ('Mean Squared Error:', metrics.mean squared error(testY, y pred))
print ('Root Mean Squared Error:', np.sqrt(metrics.mean squared error (testy,
y_pred)))

Mean Absolute Error: 1288596.31195324Z266
Mean Squared Error: 3588965179%9.369835
Eoot Mean Squared Error: 189445.64338978566

What these metrics mean and how to interpret them | have described in the following post:
Metrics for Regression Analysis

plt.plot (mlp reg.loss curve)
plt.title("Loss Curve", fontsize=14)
plt.xlabel ('Iterations')

plt.ylabel ('Cost')

plt.show ()

Loss Curve
225 lell

200

175

075
0.50 L
0.25

0 50 100 150 200 %0 300
Iterations

Cost

6 Hyper Parameter Tuning

param grid = {
'hidden layer sizes': [(150,100,50), (120,80,40), (100,50,30)],
'max_iter': [50, 1007,
'activation': ['tanh', 'relu'],
'solver': ['sgd', 'adam'],
'alpha': [0.0001, 0.057,
'learning rate': ['constant', 'adaptive'],

}
grid = GridSearchCV (mlp reg, param grid, n_jobs= -1, cv=b5)
grid.fit(trainX scaled, trainY)

print (grid.best params)

{'activation': 'relu', ‘alpha': 0.05, 'hidden layer sizes': (150, 100, 50), 'learning rate': 'constant', 'max iter”:
100, 'solwver': 'adam'}

grid predictions = grid.predict (testX scaled)
df temp2 = pd.DataFrame ({'Actual': testY, 'Predicted': grid predictions})

https://michael-fuchs-python.netlify.app/2019/06/30/metrics-for-regression-analysis/

df temp2.head()

Actual Predicted

15868 570000.0 1.248729%e+06
13655 201000.0 2.644010e+05

9646 430000.0 4.485995e+05
12734 335000.0 4.004703e+05
16525 1980000.0 1.566254e+06

df temp2 = df temp2.head(30)
df temp2.plot(kind='bar', figsize=(10,6))

plt.grid(which='major', linestyle='-', linewidth='0.5', color='green')
plt.grid(which="minor', linestyle=':"', linewidth='0.5"', color='black')
plt.show ()
2500000
- Actual
e Predicted
2000000 1
1500000
1000000 1
500000
D P
BRI RALASa RN BEEnInRERISRBRRARRSERAS
BRRNEAEH A EEIRE EEG9EHEERERE

print ('Mean Absolute Error:', metrics.mean absolute error (testy,

grid predictions))

print ('Mean Squared Error:', metrics.mean squared error (testy,

grid predictions))

print ('Root Mean Squared Error:', np.sqrt(metrics.mean squared error (testy,
grid predictions)))

Mean Absolute Error: 13748B.7695842236
Mean Squared Error: 396955070411 .75198
Foot Mean Squared Error: 199236.21762057213

