
ANN - Multi-layer Perceptron Regressor (MLPRegressor)

 1 Loading the libraries and data

 2 Data pre-processing

 3 MLPRegressor

 4 Model Evaluation

 5 Hyper Parameter Tuning

1 Loading the libraries and data

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.neural_network import MLPRegressor

from sklearn import metrics

from sklearn.model_selection import GridSearchCV

df = pd.read_csv('house_prices.csv')

df = df.drop(['id', 'date', 'yr_built', 'yr_renovated', 'zipcode', 'lat',

'long'], axis=1)

df

2 Data pre-processing

x = df.drop('price', axis=1)

y = df['price']

trainX, testX, trainY, testY = train_test_split(x, y, test_size = 0.2)

sc=StandardScaler()

scaler = sc.fit(trainX)

trainX_scaled = scaler.transform(trainX)

testX_scaled = scaler.transform(testX)

3 MLPRegressor

mlp_reg = MLPRegressor(hidden_layer_sizes=(150,100,50),

 max_iter = 300,activation = 'relu',

 solver = 'adam')

mlp_reg.fit(trainX_scaled, trainY)

4 Model Evaluation

y_pred = mlp_reg.predict(testX_scaled)

df_temp = pd.DataFrame({'Actual': testY, 'Predicted': y_pred})

df_temp.head()

df_temp = df_temp.head(30)

df_temp.plot(kind='bar',figsize=(10,6))

plt.grid(which='major', linestyle='-', linewidth='0.5', color='green')

plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black')

plt.show()

print('Mean Absolute Error:', metrics.mean_absolute_error(testY, y_pred))

print('Mean Squared Error:', metrics.mean_squared_error(testY, y_pred))

print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(testY,

y_pred)))

What these metrics mean and how to interpret them I have described in the following post:

Metrics for Regression Analysis

plt.plot(mlp_reg.loss_curve_)

plt.title("Loss Curve", fontsize=14)

plt.xlabel('Iterations')

plt.ylabel('Cost')

plt.show()

6 Hyper Parameter Tuning

param_grid = {

 'hidden_layer_sizes': [(150,100,50), (120,80,40), (100,50,30)],

 'max_iter': [50, 100],

 'activation': ['tanh', 'relu'],

 'solver': ['sgd', 'adam'],

 'alpha': [0.0001, 0.05],

 'learning_rate': ['constant','adaptive'],

}

grid = GridSearchCV(mlp_reg, param_grid, n_jobs= -1, cv=5)

grid.fit(trainX_scaled, trainY)

print(grid.best_params_)

grid_predictions = grid.predict(testX_scaled)

df_temp2 = pd.DataFrame({'Actual': testY, 'Predicted': grid_predictions})

https://michael-fuchs-python.netlify.app/2019/06/30/metrics-for-regression-analysis/

df_temp2.head()

df_temp2 = df_temp2.head(30)

df_temp2.plot(kind='bar',figsize=(10,6))

plt.grid(which='major', linestyle='-', linewidth='0.5', color='green')

plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black')

plt.show()

print('Mean Absolute Error:', metrics.mean_absolute_error(testY,

grid_predictions))

print('Mean Squared Error:', metrics.mean_squared_error(testY,

grid_predictions))

print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(testY,

grid_predictions)))

