ML LAB EXERCISE - WEEK -7

Decision Tree Classifier — ID3

1. Aim of the Experiment:

Implement and demonstrate the working of the decision tree based ID3 algorithm using a

sample data set. Build the decision tree and use this model to classify a test sample.

Listing 1:
Sample Dataset Used: Table 1

1. >9 Yes Very good Good Yes
2. >8 No Good Moderate Yes
3. >9 No Average Poor No

4, <8 No Average Good No

5. >8 Yes Good Moderate Yes
6. >9 Yes Good Moderate Yes
7. <8 Yes Good Poor No

8. >9 No Very good Good Yes
9. >8 Yes Good Good Yes
10. | >8 Yes Average Good Yes

3. Python Program with Explanation:
1. Import the library ‘pandas’ to create a Data frame which is a two-dimensional data
Structure.

import pandas

2. Import DecisionTreeClassifier from sklearn.tree.

from sklearn.tree import DecisionTreeClassifier

3. Import LabelEncoder to normalize labels.

from sklearn.preprocessing import LabelEncoder

4. Import train_test_split function.

from sklearn.model_selection import train_test_split

5. Import metrics module to implement functions to measure classification performance.

from sklearn import metrics

6. Import classification_report and confusion_matrix from sklearn.metrics to measure the
quality of predictions.

from sklearn.metrics import classification_report, confusion_matrix

7. Create a list ‘data’ with the sample dataset.
data = {'CGPA"['g9','g8','g9","18','g8','g9","18",'g9','g8','g8'],
Inter:["Y','N",'N",'N",'Y"%,"Y","Y",'N",'Y,'Y'],
PR+ == == e =)

FCSI:[IGl'lMI,'PI'IGF'IMI,IMI,IPl,IG',IG',IG'],
IJObI:[IYI,lYI'INI'INI'IYI'IYI’INI'IYI'IYl'IYI]}

8. Create pandas dataframe “table” using the structure DataFrame with the given dataset ‘data’.

table=pandas.DataFrame(data, columns=["CGPA","Inter","PK","CS","Job"])

9. Use a value ["CGPA"]=="¢g9" in the table to select matching row and count the number of
columns.

table.where(table["CGPA"]=="g9").count()

10. Use LabelEncoder() to encode target labels with value between 0 and no_of classes-1.

encoder=LabelEncoder()

11. Then transform non-numerical labels to numerical labels.
foriin table:

table[i]=encoder.fit_transform(tablel[i])

12. Use iloc property to select by position.

Select the columns until (excluding) the fifth column.

X=table.iloc[:,0:4].values

Select the fifth column

y=table.iloc[:,4].values

13. Split the dataset into training dataset and test dataset by using the function train_test_split().
This function has several parameters, but we pass 3 parameters, data, test size and
random_state.

X, y is the dataset we are selecting to use.

test_size to specify the size of the testing dataset. It will be set to 0.25 if the training size is set
to default.

random_state to perform a random split.

X_train is the features of the training subset

y_train is the class labels of the target feature of the training subset

X_test holds the features of the testing subset

y_test holds the class labels of the target feature of the testing subset

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2)
14. Use DecisionTreeClassifier model. It allows some attributes like criterion, splitter,
max_features, max_depth, max_leaf nodes etc., we will use the attribute criterion which
takes a value ‘entropy’ to implement a classifier using ID3. The attribute value for max_depth

is given as 3 to pre prune the tree.

model=DecisionTreeClassifier(criterion="'entropy', max_depth=3)

13. DecisionTreeClassifier model takes as input two arrays: an array X_train, holding the
training instances, and an array y_train holding the class labels for the training instances.

Then train the classifier using the function fit().

model.fit(X_train,y_train)

14. To make predictions, the predict method of the DecisionTreeClassifier class is used.

y_pred = model.predict(X_test)

15. Use sklearn.metrics.accuracy_score() to compute the accuracy by comparing actual test
set values and predicted values.

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

16. Generate classification report & confusion matrix to measure the quality of predictions.

print(confusion_matrix(y_test, y_pred))

print(classification_report(y_test, y_pred))

17. After training, the fitted model can be used to predict a new instance.

The non-numerical equivalent of the new instance [1,0,0,1] given is [‘g9’, Y’, “***’,

‘M’]

print([1,0,0,1])

if model.predict([[1,0,0,1]])==1:
print("Got JOB")

else:

print("Didnt get JOB")

The non-numerical equivalent of the new instance [2,0,2,0] given is [‘18°, °Y’, ‘==",
‘G']
print([2,0,2,0])
if model.predict([[2,0,2,0]])==1:
print("Got JOB")

about:blank#sklearn.tree.DecisionTreeClassifier

else:

print("Didnt get JOB")

Complete Program:

import pandas

from sklearn.tree import DecisionTreeClassifier

from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import metrics

from sklearn.metrics import classification_report, confusion_matrix

data = {lCGPAI:[lggl’lg8|,|g9|,||8l’|g8|'|g9|’||8|'|g9|’|g8|’|g8|]’
||nterl:[IYI'IN|'|NI'INI'IYI'lYI,lYl,lNI,IYI,IYI],
IPK|:[|+++|'|+|,|==l'|==|'|+|,|+l'|+|,|+++l'|+|,|==|]'

ICSI:[IGI,IMI,lPI’IGI'IMI'IMI'IPIIIGI'IGIIIGI]'
IJObI:[IYI,IYI,INI,INI’IYI,IYI,INI,IYI,IYI,IYI]}

table=pandas.DataFrame(data,columns=["CGPA","Inter","PK","CS","Job"])
table.where(table["CGPA"]=="g9").count()

encoder=LabelEncoder()

foriin table:

table[i]=encoder.fit_transform(table[i])

X=table.iloc[:,0:4].values

y=table.iloc[:,4].values

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size= 0.20,random_state=2)
model=DecisionTreeClassifier(criterion='entropy', max_depth=3)

model = model.fit(X_train,y_train)

y_pred = model.predict(X_test)

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

print(confusion_matrix(y_test, y_pred))

print(classification_report(y_test, y_pred))

print([1,0,0,1])

if model.predict([[1,0,0,1]])==1:
print("Got JOB")

else:
print("Didn’t get JOB")

print([2,0,2,0])

if model.predict([[2,0,2,0]])==1:
print("Got JOB")

else:

print("Didn’t get JOB")

Accuracy: 1.0
(11

precision recall fl-score support

1 1.00 1.00 1.00 1

accuracy 1.00 1
macro avg 1.00 1.00 1.00 1
weightedavg 1.00 1.00 1.00 1

[1,0,0,1]

Got JOB
[2,0,2,0]
Didn’t get JOB

>>>

Screen Shot of the Output:

table=pandas.DataFrame (data, columns=["CGEA", "Inter”, "BK", "C3", "Jokb"])
table.where (table ["CGPA"]=="g5") .count ()
encoder=LabelEncodex ()

for i1 in table:
takle[i]=encoder.fic_transform(table[i])

X=table.iloc[:,0:4].values
y=table.iloc[:,4].values

X _train,X_test,y train,y_test=train_test_split (X, y,test_size=1,random state=2)
model=DecisionTresClassifier (criterion='entropy', max depth=3) # ID3 + pre pruni

model = model.fic(X_train,y_train)

y_pred = model.predict(X_test)

ating C ification Model Accuracy

o
(confusion matrix(v_test, y pred))
print (classification report(y_test, y pred))

",metrics.accuracy_score (v_test, v pred)) # classification rate

print([1,0,0,1])
£ model.pzedict ([[1,0,0,1]])—1:
rint ("Got J0

Listing 2:

Program Code:

from matplotlib import pyplot as plt

from sklearn import datasets

from sklearn.tree import DecisionTreeClassifier
from sklearn import tree

import graphviz

Load the Iris dataset
iris = datasets.load_iris()
X =iris.data

y = iris.target

Train the model using DecisionTreeClassifier ID3

Accuracy: 1.0
[rin1

precision
1 1.00
accuracy
macro avg 1.00
weighted avg 1.00
(L, 0, 0,11
Got JCB

(2, 0, z, 0]
Didnt get JOB

clf = DecisionTreeClassifier(criterion="entropy', max_depth=3)

model = clf fit(X, y)

#Visualize the model using tree graph
fig = plt.figure(figsize=(10,8))

_ =tree.plot_tree(clf,

recall

1.00

1.00
1.00

fl-score

l.00

1.00

l.00
1.00

SUpport

1

feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True)

plt.show()

#fig.savefig("decistion_tree.png")

petal width (cm) <= 0.8
entropy = 1.585
samples = 150

value =[50, 50, 50]
class = setosa

petal width (cm) <= 1.75
entropy = 1.0
samples = 100

value = [0, 50, 50]
class = versicolor

