LAB EXERCISE - 1
Perceptron (without using any ML/DL libraries)

1. Aim of the Experiment:
Implement and demonstrate perceptron model, a linear binary classifier used for supervised

learning.

Listing 1: Figure 1 - Artificial Neural Networks

Bias

— 0/1

— 01

Input
Figure 1: Perceptron for Boolean Function AND
Desired output for Boolean function AND is shown in Table 1
Table 1: AND Truth Table

X1 X2 Ydes
0 0 0
0 1 0
1 0 0
1 1 1

Consider the perceptron to represent the Boolean function AND with the initial weights W1 =

0.3, W2 = -0.2, learning rate n = 0.2 and bias 6 = 0.4 as shown in Figure 1. The activation

function used is the Step function f(x) which gives the output value as binary i.e., 0 or 1. If
value of f(x) is greater than or equal to 0, it outputs 1 or else it outputs 0.

We design a perceptron that performs the Boolean function AND. The weights are updated
until the Boolean function gives the desired output.

Python Program with Explanation:

1. Import numpy, array-processing package to work with the arrays.

import numpy as np

2. Create a Perceptron class to implement a perceptron network. Define the built-in __init_ ()
function that takes learning rate of 0.2 and number of epochs of 4 to initialize the object. The

initial weight vector is set as [0.3, -0.2].

class Perceptron(object):
def __init_ (self, input_size, Ir=0.2, epochs=4):
self.W = np.array([0.3,-0.2])
self.epochs = epochs

self.lr =Ir

3. Define the activation function as Step function f(x) which gives the output value as binary
i.e., 0 or 1. If value of f(x) is greater than or equal to 0, it outputs 1 or else it outputs O.

def activation_fn(self, x):

return 1 if x>=0else 0

4. Define the predict function to compute the weighted sum ‘z’ by multiplying the inputs with
the weights and add the products. Then subtract 8. Round the value to 2 decimals. Then call

the activation function.

def predict(self, x, theta):
z = self.W.T.dot(x)-theta

z=round(z,2)

a = self.activation_fn(z)

return a

5. Define the learning function fit() passing all inputs X, the desired output d, bias 6 and
count.

Update the weights for epochs, until the perceptron can correctly classify all inputs.

def fit(self, X, d,theta ,count):

for _in range(self.epochs):

print("Epoch: ", count, "\n")
count = count+1
for i in range(d.shape[0]):
x = X[i]
print("input", x, "\t", "Weight:",self.W)

print("\n")

Call the predict function, passing the input value x and theta. The function returns the predicted
output value ‘y’.

y = self.predict(x,theta)

Calculate error as the difference between the desired output d[i] and the predicted output y.

e=d[i] -y

Update the weight vector.

self.W =self.W + self.Ir ¥ e * x

6. Define the main function with input array X, desired output array d. This function is the
entry point of the program.
if _name__=='_main__"
X =np.array([

[0, 01,

[0, 1,
[1,01,
[1,1]
1)
d = np.array([0, O, 0, 1])

Create perceptron object. When the object is created, the __init__ () function is called and the
object is initialized.
perceptron = Perceptron(input_size=2)
theta=0.4
count =1
Call the learning function of the perceptron passing training input X, desired output d, theta
and count.
perceptron.fit(X, d, theta, count)
Finally print the learned weights for the AND gate which gives the desired output.
print(perceptron.W)

Complete Program:

import numpy as np

class Perceptron(object):

def __init__(self, input_size, Ir=0.2, epochs=4):
self.W = np.array([0.3,-0.2])
self.epochs = epochs

self.lr=1Ir

def activation_fn(self, x):

return1ifx>=0else 0

def predict(self, x,theta):
z = self.W.T.dot(x)-theta

z=round(z,2)

a = self.activation_fn(z)

return a

def fit(self, X, d,theta ,count):

for _in range(self.epochs):

print("Epoch: ", count)
count = count+1
foriin range(d.shape[0]):
x = X[i]
print("input", x, "\t", "Weight:",self.W)
y = self.predict(x,theta)
e=d[i] -y
self W = self.W + self.Ir * e * x
if _name_ =='_ main__":
X =np.array([
[0, 0],
[0, 1],
(1, 0],
[1,1]
1)
d = np.array([0, 0, 0, 1])

perceptron = Perceptron(input_size=2)
theta=0.4

count =1

perceptron.fit(X, d,theta, count)

print(perceptron.W)

Output:

Epoch: 1
input [0 0] Weight: [0.3 -0.2]

input [0 1] Weight: [0.3 -0.2]

input [1 0] Weight: [0.3 -0.2]
input [1 1] Weight: [0.3 -0.2]
Epoch: 2

input [0 0] Weight: [0.5 0.]
input [0 1] Weight: [0.5 0.]
input [1 0] Weight: [0.5 0.]
input [1 1] Weight: [0.3 0.]
Epoch: 3

input [0 0] Weight: [0.5 0.2]
input [0 1] Weight: [0.5 0.2]
input [1 0] Weight: [0.5 0.2]
input [1 1] Weight: [0.3 0.2]
Epoch: 4

input [0 0] Weight: [0.3 0.2]
input [0 1] Weight: [0.3 0.2]
input [1 0] Weight: [0.3 0.2]
input [1 1] Weight: [0.3 0.2]
[0.30.2]

>>>

It is observed that with 4 epochs, the perceptron learns, and the weights have been updated to
0.3 and 0.2 with which the perceptron gives the desired output of a Boolean AND function.

Screenshot of the Output:

self.lr = 1r

1=f activation_fn(self, x):
return 1 if x >= 0 =ls= 0

1=f predict(self, x,theta):
z = self.W.T.dot (x)-theta
z=round(z,2)
2 = self.activation_fn(z)

i=f fit(self, X, d,theta ,count):
fo n rangs (self.epochs):

poch: ", count)
count+1 === == RESLARL! UI\USEIs\AUMIN\PYLRORn

1

input [0 0] 2
print (. input [0 1]
v = self.predict (x,theta) input [1 0]
e =d[i] - ¥ input [1 1]
self.W = self.W + self.lr * e * x Epoch: 2
input [0 0] Weight: [0.5 0.]
input [0 1] Weight: [0.5 0.]
£ _name == '_ main_': input [1 0] Weight: [0.5 0.]
X = np.array([inputc [1 1] Weighe: [0.3 0.]
1o, o1, Epoch: 3
o, 11, inpuc [0 0] 5 0.2
1, o1, inpuc [0 1] 5 0.2]
1, 11 input [1 0] 5 0.2
1) input [1 1] 3 0.2]
d = np.array([9, 0, 0, 1]) Epoch: 4
input [0 0] 3 0.2]
perceptron = Perceptron (input_size=2) input [0 1] 3 0.2]
theta=0.4 inpuc [1 0] 3 0.2]
count =1 input [1 1] 3 0.2]

perceptron.fit (X, d,theta, count) [0.3 0.2]
print (perceptron.W) s>>

Perceptron implementation using SCIKIT LEARN:

from sklearn.linear model import Perceptron # for and logic
KA AR A A A A A A A A A A A A A A A A A AR A A A A A A A A AR A A AR A AN A A AR A AR A AR A A A A ARk A A A A A Ak A A kA Ak, kK

import numpy as np
from sklearn.linear model import Perceptron
from sklearn.metrics import accuracy score

o =

#
#
#

1. Define the input data (features) and target labels for the AND gate
X: Input features (two inputs for AND gate)
y: Target labels (output of AND gate)
= np.array([[0, O],

[0, 11,

[1, o1,

(1, 111)
= np.array ([0,

0,

0,

1])

2. Create and train the Perceptron model
Set a random state for reproducibility and max iter to ensure convergence
etal is the learning rate, the default is 1.0

perceptron model = Perceptron(random state=42, max iter=10, eta0=0.1)
perceptron model.fit(X, y)

#

3. Evaluate the model on the training data

predictions = perceptron_model.predict (X)
print (f"Predictions: {predictions}")
print (f"Actual Labels: {y}")

accuracy = accuracy_score(y, predictions)
print (f"Accuracy: {accuracy * 100}%")

#
#

4. Access the learned weights and bias (optional)
The coef attribute holds the weights, and intercept holds the bias

print(f"Learned weights (coef): {perceptron model.coef }")

print(f"Learned bias (intercept): {perceptron model.intercept }")
*kkkkkkkkkkhkkhhkkkhkhkkhhkkhhhhkhkhhhhhhhhhkhkhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhkhkhhhhhhhhhhhkhhhhhhhkrkhhhikix

Perceptron on Or-, And- and Xor data

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt import seaborn as sns

or data = pd.DataFrame () and data = pd.DataFrame () xor data =
pd.DataFrame ()

or data['inputl']=
or data['input2']=

[1]
[l
or data['ouput']=[1

0
0]
]

4 I I

,l,l,O
and data['inputl']=[1,1,0,0]
and data['input2']=[1,0,1,0]
and data['ouput']=[1,0,0,0]
xor data['inputl']=[1,1,0,0]
xor data['input2']=[1,0,1,0]

]

xor data['ouput']=[0,1,1,0

from sklearn.linear model import Perceptron clfl=Perceptron()
clf2=Perceptron() clf3=Perceptron()

clfl.fit(and data.iloc[:,0:2].values,and data.iloc[:,-1].values)

print (clfl.coef)

print (clfl.intercept) x=np.linspace(-1,1,5) y=-x+1

plt.plot(x,y)

#sns.scatterplot (and data['inputl'],and data['input2'],hue=and data['ouput'
1,8=200) clf2.fit(or data.iloc[:,0:2].values,or data.iloc[:,-1].values)
print (clf2.coef) print(clf2.intercept) xl=np.linspace(-1,1,5) yl=-x+0.5
plt.plot(x1l,yl)

#sns.scatterplot (or data['inputl'],or data['input2'],hue=or datal['ouput'],s
=200) clf3.fit(xor _data.iloc[:,0:2].values,xor data.iloc[:,-1].values)
print (clf3.coef)

print (clf3.intercept)

plot decision regions(xor data.iloc[:,0:2].values,xor data.iloc[:, -
1].values, clf=clf3, legend=2)

KA KA R AR AR A R AR AR AR AR AR AR AR AR AR AR AR AR AR AR A AR A A A A A A AR A A AR AR AR A A A A A ARk XK

from sklearn.neural network import MLPClassifier # for XOR
kkkkkkkkkkkkkkkkkkhkkkkkkkkhkkkkhkkhkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

Input Layer Hidden Layer Output Layer

import numpy as np
from sklearn.neural network import MLPClassifier
from sklearn.metrics import accuracy score

1. Define the XOR data
Features (X): 4 input combinations for XOR
X = np.array([[0, O], [O, 1], [1, O], [1, 111)

Labels (y): Corresponding XOR outputs
y = np.array ([0, 1, 1, 0])

2. Initialize the MLPClassifier

We use one hidden layer with 2 neurons (the minimum required to solve
XOR)
'logistic' activation is commonly used for this problem.
'stochastic gradient descent' (sgd) is the optimizer.
random state for reproducibility.
mlp = MLPClassifier (hidden layer sizes=(2,),
activation='logistic',
solver='sgd"',
learning rate init=0.1,
max_ iter=10000,
random_state=1)

3. Train the model
The model learns the complex, non-linear relationship
mlp.fit (X, vy)

4. Make predictions
predictions = mlp.predict (X)

5. Evaluate the model

print (f"Predictions: {predictions}")

print (£f"Actual Labels: {y}")

print (f"Accuracy: {accuracy_ score(y, predictions) * 100:.2£f}%")

Test with new data (optional)
test data = np.array([[0, O], [O, 1], [1, Ol, [1, 111)
test predictions = mlp.predict (test data)

print (f"\nTest Predictions: {test predictions}")
3k 3k 3k 3k 3k 5k 3k %k 3k 3k sk 5k %k 3k 3k 3k sk sk 3k sk sk ok sk sk sk 3k ok sk sk sk sk sk ok sk sk sk sk sk 3k sk sk sk sk 3k sk 3k sk sk >k 3k 3k sk sk sk sk 3k 3k sk sk sk 3k 3k 5k 3k %k 3k 3k 5k 5k %k sk %k %k ok %k k

