
   
  

LAB EXERCISE - 1 

Perceptron (without using any ML/DL libraries) 

 

1. Aim of the Experiment: 

Implement and demonstrate perceptron model, a linear binary classifier used for supervised 

learning.   

 

Listing 1: Figure 1 - Artificial Neural Networks 

 

Figure 1: Perceptron for Boolean Function AND 

Desired output for Boolean function AND is shown in Table 1 

Table 1: AND Truth Table 

X1 X2 Ydes 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

Consider the perceptron to represent the Boolean function AND with the initial weights W1 = 

0.3, W2 = -0.2, learning rate η = 0.2 and bias 𝜃 = 0.4 as shown in Figure 1. The activation 



   
  

function used is the Step function f(x) which gives the output value as binary i.e., 0 or 1. If 

value of f(x) is greater than or equal to 0, it outputs 1 or else it outputs 0. 

We design a perceptron that performs the Boolean function AND. The weights are updated 

until the Boolean function gives the desired output.  

 

Python Program with Explanation: 

 

1. Import numpy, array-processing package to work with the arrays. 

import numpy as np 

 

2. Create a Perceptron class to implement a perceptron network. Define the built-in __init__() 

function that takes learning rate of 0.2 and number of epochs of 4 to initialize the object. The 

initial weight vector is set as [0.3, -0.2]. 

 

class Perceptron(object): 

    def __init__(self, input_size, lr=0.2, epochs=4): 

        self.W = np.array([0.3,-0.2]) 

        self.epochs = epochs 

        self.lr = lr 

     

3. Define the activation function as Step function f(x) which gives the output value as binary 

i.e., 0 or 1. If value of f(x) is greater than or equal to 0, it outputs 1 or else it outputs 0. 

 

    def activation_fn(self, x): 

        return 1 if x >= 0 else 0 

 

4. Define the predict function to compute the weighted sum ‘z’ by multiplying the inputs with 

the weights and add the products. Then subtract 𝜃. Round the value to 2 decimals. Then call 

the activation function. 

  

    def predict(self, x, theta): 

        z = self.W.T.dot(x)-theta 

        z=round(z,2) 



   
  

        a = self.activation_fn(z) 

         return a 

 

5. Define the learning function fit() passing all inputs X, the desired output d, bias θ  and    

   count.  

    Update the weights for epochs, until the perceptron can correctly classify all inputs.  

 

    def fit(self, X, d,theta ,count): 

        for _ in range(self.epochs): 

             

            print("Epoch: ", count, "\n") 

            count = count+1 

            for i in range(d.shape[0]): 

                x = X[i] 

                print("input", x , "\t", "Weight:",self.W ) 

                print("\n") 

 

Call the predict function, passing the input value x and theta. The function returns the predicted 

output value ‘y’. 

                y = self.predict(x,theta) 

 

Calculate error as the difference between the desired output d[i] and the predicted output y. 

                e = d[i] – y 

 

Update the weight vector. 

                self.W = self.W + self.lr * e * x  

 

6. Define the main function with input array X, desired output array d. This function is the 

entry point of the program. 

if __name__ == '__main__': 

    X = np.array([ 

        [0, 0], 



   
  

        [0, 1], 

        [1, 0], 

        [1, 1] 

    ]) 

    d = np.array([0, 0, 0, 1]) 

 

Create perceptron object. When the object is created, the __init__() function is called and the 

object is initialized. 

    perceptron = Perceptron(input_size=2) 

    theta=0.4 

    count =1 

Call the learning function of the perceptron passing training input X, desired output d, theta 

and count. 

    perceptron.fit(X, d, theta, count) 

Finally print the learned weights for the AND gate which gives the desired output. 

    print(perceptron.W) 

 

Complete Program: 

import numpy as np  

 

class Perceptron(object): 

    

    def __init__(self, input_size, lr=0.2, epochs=4): 

        self.W = np.array([0.3,-0.2]) 

        self.epochs = epochs 

        self.lr = lr 

     

    def activation_fn(self, x): 

        return 1 if x >= 0 else 0 

  

    def predict(self, x,theta): 

        z = self.W.T.dot(x)-theta 

        z=round(z,2) 



   
  

        a = self.activation_fn(z) 

        return a 

     

    def fit(self, X, d,theta ,count): 

        for _ in range(self.epochs): 

             

            print("Epoch: ", count) 

            count = count+1 

            for i in range(d.shape[0]): 

                x = X[i] 

                print("input", x , "\t", "Weight:",self.W ) 

                y = self.predict(x,theta) 

                e = d[i] - y 

                self.W = self.W + self.lr * e * x 

                 

if __name__ == '__main__': 

    X = np.array([ 

        [0, 0], 

        [0, 1], 

        [1, 0], 

        [1, 1] 

    ]) 

    d = np.array([0, 0, 0, 1]) 

  

    perceptron = Perceptron(input_size=2) 

    theta=0.4 

    count =1 

    perceptron.fit(X, d,theta, count) 

    print(perceptron.W) 

 

Output: 

========== perceptron.py ========== 

Epoch:  1 

input [0 0]   Weight: [ 0.3 -0.2] 



   
  

input [0 1]   Weight: [ 0.3 -0.2] 

input [1 0]   Weight: [ 0.3 -0.2] 

input [1 1]   Weight: [ 0.3 -0.2] 

Epoch:  2 

input [0 0]   Weight: [0.5 0. ] 

input [0 1]   Weight: [0.5 0. ] 

input [1 0]   Weight: [0.5 0. ] 

input [1 1]   Weight: [0.3 0. ] 

Epoch:  3 

input [0 0]   Weight: [0.5 0.2] 

input [0 1]   Weight: [0.5 0.2] 

input [1 0]   Weight: [0.5 0.2] 

input [1 1]   Weight: [0.3 0.2] 

Epoch:  4 

input [0 0]   Weight: [0.3 0.2] 

input [0 1]   Weight: [0.3 0.2] 

input [1 0]   Weight: [0.3 0.2] 

input [1 1]   Weight: [0.3 0.2] 

[0.3 0.2] 

>>>  

It is observed that with 4 epochs, the perceptron learns, and the weights have been updated to 

0.3 and 0.2 with which the perceptron gives the desired output of a Boolean AND function. 

 

Screenshot of the Output: 

 



   
  

 

 

Perceptron implementation using SCIKIT LEARN: 

from sklearn.linear_model import Perceptron # for and logic 
*************************************************************************** 

import numpy as np 

from sklearn.linear_model import Perceptron 

from sklearn.metrics import accuracy_score 

 

# 1. Define the input data (features) and target labels for the AND gate 

# X: Input features (two inputs for AND gate) 

# y: Target labels (output of AND gate) 

X = np.array([[0, 0],  

              [0, 1],  

              [1, 0],  

              [1, 1]]) 

 

y = np.array([0,  

              0,  

              0,  

              1]) 

 

# 2. Create and train the Perceptron model 

# Set a random_state for reproducibility and max_iter to ensure convergence 

# eta0 is the learning rate, the default is 1.0 

perceptron_model = Perceptron(random_state=42, max_iter=10, eta0=0.1)  

perceptron_model.fit(X, y) 

 

# 3. Evaluate the model on the training data 

predictions = perceptron_model.predict(X) 

print(f"Predictions: {predictions}") 

print(f"Actual Labels: {y}") 

accuracy = accuracy_score(y, predictions) 

print(f"Accuracy: {accuracy * 100}%") 

 

# 4. Access the learned weights and bias (optional) 

# The coef_ attribute holds the weights, and intercept_ holds the bias 

print(f"Learned weights (coef_): {perceptron_model.coef_}") 

print(f"Learned bias (intercept_): {perceptron_model.intercept_}") 

***************************************************************************************************** 



   
  

# Perceptron on Or-, And- and Xor data  

 

import numpy as np  

import pandas as pd  

import matplotlib.pyplot as plt import seaborn as sns  

or_data = pd.DataFrame() and_data = pd.DataFrame() xor_data = 

pd.DataFrame()  

or_data['input1']=[1,1,0,0]  

or_data['input2']=[1,0,1,0]  

or_data['ouput']=[1,1,1,0]  

and_data['input1']=[1,1,0,0]  

and_data['input2']=[1,0,1,0]  

and_data['ouput']=[1,0,0,0]  

xor_data['input1']=[1,1,0,0]  

xor_data['input2']=[1,0,1,0]  

xor_data['ouput']=[0,1,1,0]  

from sklearn.linear_model import Perceptron clf1=Perceptron()  

clf2=Perceptron() clf3=Perceptron()  

clf1.fit(and_data.iloc[:,0:2].values,and_data.iloc[:,-1].values) 

print(clf1.coef_)  

print(clf1.intercept_) x=np.linspace(-1,1,5) y=-x+1  

plt.plot(x,y) 

#sns.scatterplot(and_data['input1'],and_data['input2'],hue=and_data['ouput'

],s=200) clf2.fit(or_data.iloc[:,0:2].values,or_data.iloc[:,-1].values)  

print(clf2.coef_) print(clf2.intercept_) x1=np.linspace(-1,1,5) y1=-x+0.5  

plt.plot(x1,y1) 

#sns.scatterplot(or_data['input1'],or_data['input2'],hue=or_data['ouput'],s

=200) clf3.fit(xor_data.iloc[:,0:2].values,xor_data.iloc[:,-1].values) 

print(clf3.coef_)  

print(clf3.intercept_) 

plot_decision_regions(xor_data.iloc[:,0:2].values,xor_data.iloc[:,-

1].values, clf=clf3, legend=2) 

*********************************************************************** 

 

from sklearn.neural_network import MLPClassifier # for XOR 

****************************************************************************************************** 

 

 
 

 

import numpy as np 

from sklearn.neural_network import MLPClassifier 

from sklearn.metrics import accuracy_score 

 

# 1. Define the XOR data 

# Features (X): 4 input combinations for XOR 

X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) 

 

# Labels (y): Corresponding XOR outputs 

y = np.array([0, 1, 1, 0]) 

 

# 2. Initialize the MLPClassifier 



   
  

# We use one hidden layer with 2 neurons (the minimum required to solve 

XOR) 

# 'logistic' activation is commonly used for this problem. 

# 'stochastic gradient descent' (sgd) is the optimizer. 

# random_state for reproducibility. 

mlp = MLPClassifier(hidden_layer_sizes=(2,),  

                    activation='logistic',  

                    solver='sgd',  

                    learning_rate_init=0.1,  

                    max_iter=10000,  

                    random_state=1) 

 

# 3. Train the model 

# The model learns the complex, non-linear relationship 

mlp.fit(X, y) 

 

# 4. Make predictions 

predictions = mlp.predict(X) 

 

# 5. Evaluate the model 

print(f"Predictions: {predictions}") 

print(f"Actual Labels: {y}") 

print(f"Accuracy: {accuracy_score(y, predictions) * 100:.2f}%") 

 

# Test with new data (optional) 

test_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) 

test_predictions = mlp.predict(test_data) 

print(f"\nTest Predictions: {test_predictions}") 

**************************************************************************** 

 


