```
housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
housing["population_per_household"]=housing["population"]/housing["households"]
```

And now let's look at the correlation matrix again:

```
>>> corr matrix = housing.corr()
>>> corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value
                         1.000000
median income
                         0.687160
rooms_per_household
                       0.146285
total rooms
                         0.135097
                         0.114110
housing median age
                         0.064506
households
total bedrooms
                         0.047689
population_per_household -0.021985
population
                         -0.026920
longitude
                         -0.047432
latitude
                         -0.142724
bedrooms per room
                         -0.259984
Name: median_house_value, dtype: float64
```

Hey, not bad! The new bedrooms_per_room attribute is much more correlated with the median house value than the total number of rooms or bedrooms. Apparently houses with a lower bedroom/room ratio tend to be more expensive. The number of rooms per household is also more informative than the total number of rooms in a district—obviously the larger the houses, the more expensive they are.

This round of exploration does not have to be absolutely thorough; the point is to start off on the right foot and quickly gain insights that will help you get a first reasonably good prototype. But this is an iterative process: once you get a prototype up and running, you can analyze its output to gain more insights and come back to this exploration step.

Prepare the Data for Machine Learning Algorithms

It's time to prepare the data for your Machine Learning algorithms. Instead of doing this manually, you should write functions for this purpose, for several good reasons:

- This will allow you to reproduce these transformations easily on any dataset (e.g., the next time you get a fresh dataset).
- You will gradually build a library of transformation functions that you can reuse in future projects.
- You can use these functions in your live system to transform the new data before feeding it to your algorithms.

• This will make it possible for you to easily try various transformations and see which combination of transformations works best.

But first let's revert to a clean training set (by copying strat_train_set once again). Let's also separate the predictors and the labels, since we don't necessarily want to apply the same transformations to the predictors and the target values (note that drop() creates a copy of the data and does not affect strat train set):

```
housing = strat_train_set.drop("median_house_value", axis=1)
housing_labels = strat_train_set["median_house_value"].copy()
```

Data Cleaning

Most Machine Learning algorithms cannot work with missing features, so let's create a few functions to take care of them. We saw earlier that the total bedrooms attribute has some missing values, so let's fix this. You have three options:

- 1. Get rid of the corresponding districts.
- 2. Get rid of the whole attribute.
- 3. Set the values to some value (zero, the mean, the median, etc.).

You can accomplish these easily using DataFrame's dropna(), drop(), and fillna() methods:

```
housing.dropna(subset=["total_bedrooms"])
                                           # option 1
housing.drop("total_bedrooms", axis=1)
                                          # option 2
median = housing["total_bedrooms"].median() # option 3
housing["total_bedrooms"].fillna(median, inplace=True)
```

If you choose option 3, you should compute the median value on the training set and use it to fill the missing values in the training set. Don't forget to save the median value that you have computed. You will need it later to replace missing values in the test set when you want to evaluate your system, and also once the system goes live to replace missing values in new data.

Scikit-Learn provides a handy class to take care of missing values: SimpleImputer. Here is how to use it. First, you need to create a SimpleImputer instance, specifying that you want to replace each attribute's missing values with the median of that attribute:

```
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy="median")
```

Since the median can only be computed on numerical attributes, you need to create a copy of the data without the text attribute ocean_proximity:

```
housing_num = housing.drop("ocean_proximity", axis=1)
```

Now you can fit the imputer instance to the training data using the fit() method:

```
imputer.fit(housing num)
```

The imputer has simply computed the median of each attribute and stored the result in its statistics_ instance variable. Only the total_bedrooms attribute had missing values, but we cannot be sure that there won't be any missing values in new data after the system goes live, so it is safer to apply the imputer to all the numerical attributes:

```
>>> imputer.statistics_
array([ -118.51 , 34.26 , 29. , 2119.5 , 433. , 1164. , 408. , 3.5409])
>>> housing_num.median().values
array([ -118.51 , 34.26 , 29. , 2119.5 , 433. , 1164. , 408. , 3.5409])
```

Now you can use this "trained" imputer to transform the training set by replacing missing values with the learned medians:

```
X = imputer.transform(housing_num)
```

The result is a plain NumPy array containing the transformed features. If you want to put it back into a pandas DataFrame, it's simple:

Scikit-Learn Design

Scikit-Learn's API is remarkably well designed. These are the main design principles:17

Consistency

All objects share a consistent and simple interface:

Estimators

Any object that can estimate some parameters based on a dataset is called an *estimator* (e.g., an imputer is an estimator). The estimation itself is performed by the fit() method, and it takes only a dataset as a parameter (or two for supervised learning algorithms; the second dataset contains the labels). Any other parameter needed to guide the estimation process is considered a hyperparameter (such as an imputer's strategy), and it must be set as an instance variable (generally via a constructor parameter).

Transformers

Some estimators (such as an imputer) can also transform a dataset; these are called *transformers*. Once again, the API is simple: the transformation is performed by the transform() method with the dataset to transform as a

¹⁷ For more details on the design principles, see Lars Buitinck et al., "API Design for Machine Learning Software: Experiences from the Scikit-Learn Project", "arXiv preprint arXiv:1309.0238 (2013).

parameter. It returns the transformed dataset. This transformation generally relies on the learned parameters, as is the case for an imputer. All transformers also have a convenience method called fit_transform() that is equivalent to calling fit() and then transform() (but sometimes fit_transform() is optimized and runs much faster).

Predictors

Finally, some estimators, given a dataset, are capable of making predictions; they are called *predictors*. For example, the LinearRegression model in the previous chapter was a predictor: given a country's GDP per capita, it predicted life satisfaction. A predictor has a predict() method that takes a dataset of new instances and returns a dataset of corresponding predictions. It also has a score() method that measures the quality of the predictions, given a test set (and the corresponding labels, in the case of supervised learning algorithms).18

Inspection

All the estimator's hyperparameters are accessible directly via public instance variables (e.g., imputer.strategy), and all the estimator's learned parameters are accessible via public instance variables with an underscore suffix (e.g., imputer.statistics_).

Nonproliferation of classes

Datasets are represented as NumPy arrays or SciPy sparse matrices, instead of homemade classes. Hyperparameters are just regular Python strings or numbers.

Composition

Existing building blocks are reused as much as possible. For example, it is easy to create a Pipeline estimator from an arbitrary sequence of transformers followed by a final estimator, as we will see.

Sensible defaults

Scikit-Learn provides reasonable default values for most parameters, making it easy to quickly create a baseline working system.

Handling Text and Categorical Attributes

So far we have only dealt with numerical attributes, but now let's look at text attributes. In this dataset, there is just one: the ocean proximity attribute. Let's look at its value for the first 10 instances:

¹⁸ Some predictors also provide methods to measure the confidence of their predictions.

```
>>> housing cat = housing[["ocean proximity"]]
>>> housing cat.head(10)
     ocean proximity
          <1H OCEAN
17606
18632
          <1H OCEAN
        NEAR OCEAN
14650
3230
             INLAND
3555
          <1H OCEAN
19480
             INLAND
8879
          <1H OCEAN
13685
            INLAND
4937
          <1H OCEAN
4861
           <1H OCEAN
```

It's not arbitrary text: there are a limited number of possible values, each of which represents a category. So this attribute is a categorical attribute. Most Machine Learning algorithms prefer to work with numbers, so let's convert these categories from text to numbers. For this, we can use Scikit-Learn's OrdinalEncoder class:¹⁹

You can get the list of categories using the categories_ instance variable. It is a list containing a 1D array of categories for each categorical attribute (in this case, a list containing a single array since there is just one categorical attribute):

One issue with this representation is that ML algorithms will assume that two nearby values are more similar than two distant values. This may be fine in some cases (e.g., for ordered categories such as "bad," "average," "good," and "excellent"), but it is obviously not the case for the ocean_proximity column (for example, categories 0 and 4 are clearly more similar than categories 0 and 1). To fix this issue, a common solution

¹⁹ This class is available in Scikit-Learn 0.20 and later. If you use an earlier version, please consider upgrading, or use the pandas Series.factorize() method.

is to create one binary attribute per category: one attribute equal to 1 when the category is "<1H OCEAN" (and 0 otherwise), another attribute equal to 1 when the category is "INLAND" (and 0 otherwise), and so on. This is called one-hot encoding, because only one attribute will be equal to 1 (hot), while the others will be 0 (cold). The new attributes are sometimes called dummy attributes. Scikit-Learn provides a OneHotEncoder class to convert categorical values into one-hot vectors:²⁰

```
>>> from sklearn.preprocessing import OneHotEncoder
>>> cat encoder = OneHotEncoder()
>>> housing_cat_1hot = cat_encoder.fit_transform(housing_cat)
>>> housing cat 1hot
<16512x5 sparse matrix of type '<class 'numpy.float64'>'
 with 16512 stored elements in Compressed Sparse Row format>
```

Notice that the output is a SciPy *sparse matrix*, instead of a NumPy array. This is very useful when you have categorical attributes with thousands of categories. After onehot encoding, we get a matrix with thousands of columns, and the matrix is full of 0s except for a single 1 per row. Using up tons of memory mostly to store zeros would be very wasteful, so instead a sparse matrix only stores the location of the nonzero elements. You can use it mostly like a normal 2D array,21 but if you really want to convert it to a (dense) NumPy array, just call the toarray() method:

```
>>> housing_cat_1hot.toarray()
array([[1., 0., 0., 0., 0.],
      [1., 0., 0., 0., 0.]
      [0., 0., 0., 0., 1.],
       [0., 1., 0., 0., 0.],
      [1., 0., 0., 0., 0.],
       [0., 0., 0., 1., 0.]
```

Once again, you can get the list of categories using the encoder's categories_ instance variable:

```
>>> cat_encoder.categories_
[array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
      dtype=object)]
```

²⁰ Before Scikit-Learn 0.20, the method could only encode integer categorical values, but since 0.20 it can also handle other types of inputs, including text categorical inputs.

²¹ See SciPy's documentation for more details.

If a categorical attribute has a large number of possible categories (e.g., country code, profession, species), then one-hot encoding will result in a large number of input features. This may slow down training and degrade performance. If this happens, you may want to replace the categorical input with useful numerical features related to the categories: for example, you could replace the ocean_proximity feature with the distance to the ocean (similarly, a country code could be replaced with the country's population and GDP per capita). Alternatively, you could replace each category with a learnable, low-dimensional vector called an *embedding*. Each category's representation would be learned during training. This is an example of *representation learning* (see Chapters 13 and 17 for more details).

Custom Transformers

Although Scikit-Learn provides many useful transformers, you will need to write your own for tasks such as custom cleanup operations or combining specific attributes. You will want your transformer to work seamlessly with Scikit-Learn functionalities (such as pipelines), and since Scikit-Learn relies on duck typing (not inheritance), all you need to do is create a class and implement three methods: fit() (returning self), transform(), and fit_transform().

You can get the last one for free by simply adding TransformerMixin as a base class. If you add BaseEstimator as a base class (and avoid *args and **kargs in your constructor), you will also get two extra methods (get_params()) and set_params()) that will be useful for automatic hyperparameter tuning.

For example, here is a small transformer class that adds the combined attributes we discussed earlier:

```
else:
            return np.c [X, rooms per household, population per household]
attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
housing_extra_attribs = attr_adder.transform(housing.values)
```

In this example the transformer has one hyperparameter, add_bedrooms_per_room, set to True by default (it is often helpful to provide sensible defaults). This hyperparameter will allow you to easily find out whether adding this attribute helps the Machine Learning algorithms or not. More generally, you can add a hyperparameter to gate any data preparation step that you are not 100% sure about. The more you automate these data preparation steps, the more combinations you can automatically try out, making it much more likely that you will find a great combination (and saving you a lot of time).

Feature Scaling

One of the most important transformations you need to apply to your data is feature scaling. With few exceptions, Machine Learning algorithms don't perform well when the input numerical attributes have very different scales. This is the case for the housing data: the total number of rooms ranges from about 6 to 39,320, while the median incomes only range from 0 to 15. Note that scaling the target values is generally not required.

There are two common ways to get all attributes to have the same scale: min-max scaling and standardization.

Min-max scaling (many people call this *normalization*) is the simplest: values are shifted and rescaled so that they end up ranging from 0 to 1. We do this by subtracting the min value and dividing by the max minus the min. Scikit-Learn provides a transformer called MinMaxScaler for this. It has a feature_range hyperparameter that lets you change the range if, for some reason, you don't want 0-1.

Standardization is different: first it subtracts the mean value (so standardized values always have a zero mean), and then it divides by the standard deviation so that the resulting distribution has unit variance. Unlike min-max scaling, standardization does not bound values to a specific range, which may be a problem for some algorithms (e.g., neural networks often expect an input value ranging from 0 to 1). However, standardization is much less affected by outliers. For example, suppose a district had a median income equal to 100 (by mistake). Min-max scaling would then crush all the other values from 0-15 down to 0-0.15, whereas standardization would not be much affected. Scikit-Learn provides a transformer called StandardScaler for standardization.

As with all the transformations, it is important to fit the scalers to the training data only, not to the full dataset (including the test set). Only then can you use them to transform the training set and the test set (and new data).

Transformation Pipelines

As you can see, there are many data transformation steps that need to be executed in the right order. Fortunately, Scikit-Learn provides the Pipeline class to help with such sequences of transformations. Here is a small pipeline for the numerical attributes:

The Pipeline constructor takes a list of name/estimator pairs defining a sequence of steps. All but the last estimator must be transformers (i.e., they must have a fit_transform() method). The names can be anything you like (as long as they are unique and don't contain double underscores, __); they will come in handy later for hyperparameter tuning.

When you call the pipeline's fit() method, it calls fit_transform() sequentially on all transformers, passing the output of each call as the parameter to the next call until it reaches the final estimator, for which it calls the fit() method.

The pipeline exposes the same methods as the final estimator. In this example, the last estimator is a StandardScaler, which is a transformer, so the pipeline has a transform() method that applies all the transforms to the data in sequence (and of course also a fit_transform() method, which is the one we used).

So far, we have handled the categorical columns and the numerical columns separately. It would be more convenient to have a single transformer able to handle all columns, applying the appropriate transformations to each column. In version 0.20, Scikit-Learn introduced the ColumnTransformer for this purpose, and the good news is that it works great with pandas DataFrames. Let's use it to apply all the transformations to the housing data:

from sklearn.compose import ColumnTransformer

```
num attribs = list(housing num)
cat_attribs = ["ocean_proximity"]
full pipeline = ColumnTransformer([
        ("num", num_pipeline, num_attribs),
        ("cat", OneHotEncoder(), cat_attribs),
    1)
```

housing_prepared = full_pipeline.fit_transform(housing)

First we import the ColumnTransformer class, next we get the list of numerical column names and the list of categorical column names, and then we construct a Colum nTransformer. The constructor requires a list of tuples, where each tuple contains a name,²² a transformer, and a list of names (or indices) of columns that the transformer should be applied to. In this example, we specify that the numerical columns should be transformed using the num_pipeline that we defined earlier, and the categorical columns should be transformed using a OneHotEncoder. Finally, we apply this ColumnTransformer to the housing data: it applies each transformer to the appropriate columns and concatenates the outputs along the second axis (the transformers must return the same number of rows).

Note that the OneHotEncoder returns a sparse matrix, while the num_pipeline returns a dense matrix. When there is such a mix of sparse and dense matrices, the Colum nTransformer estimates the density of the final matrix (i.e., the ratio of nonzero cells), and it returns a sparse matrix if the density is lower than a given threshold (by default, sparse_threshold=0.3). In this example, it returns a dense matrix. And that's it! We have a preprocessing pipeline that takes the full housing data and applies the appropriate transformations to each column.

Instead of using a transformer, you can specify the string "drop" if you want the columns to be dropped, or you can specify "pass through" if you want the columns to be left untouched. By default, the remaining columns (i.e., the ones that were not listed) will be dropped, but you can set the remainder hyperparameter to any transformer (or to "passthrough") if you want these columns to be handled differently.

If you are using Scikit-Learn 0.19 or earlier, you can use a third-party library such as sklearn-pandas, or you can roll out your own custom transformer to get the same functionality as the ColumnTransformer. Alternatively, you can use the FeatureUnion

²² Just like for pipelines, the name can be anything as long as it does not contain double underscores.

class, which can apply different transformers and concatenate their outputs. But you cannot specify different columns for each transformer; they all apply to the whole data. It is possible to work around this limitation using a custom transformer for column selection (see the Jupyter notebook for an example).

Select and Train a Model

At last! You framed the problem, you got the data and explored it, you sampled a training set and a test set, and you wrote transformation pipelines to clean up and prepare your data for Machine Learning algorithms automatically. You are now ready to select and train a Machine Learning model.

Training and Evaluating on the Training Set

The good news is that thanks to all these previous steps, things are now going to be much simpler than you might think. Let's first train a Linear Regression model, like we did in the previous chapter:

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(housing_prepared, housing_labels)
```

Done! You now have a working Linear Regression model. Let's try it out on a few instances from the training set:

```
>>> some_data = housing.iloc[:5]
>>> some_labels = housing_labels.iloc[:5]
>>> some_data_prepared = full_pipeline.transform(some_data)
>>> print("Predictions:", lin_reg.predict(some_data_prepared))
Predictions: [ 210644.6045 317768.8069 210956.4333 59218.9888 189747.5584]
>>> print("Labels:", list(some_labels))
Labels: [286600.0, 340600.0, 196900.0, 46300.0, 254500.0]
```

It works, although the predictions are not exactly accurate (e.g., the first prediction is off by close to 40%!). Let's measure this regression model's RMSE on the whole training set using Scikit-Learn's mean_squared_error() function:

```
>>> from sklearn.metrics import mean_squared_error
>>> housing_predictions = lin_reg.predict(housing_prepared)
>>> lin_mse = mean_squared_error(housing_labels, housing_predictions)
>>> lin_rmse = np.sqrt(lin_mse)
>>> lin_rmse
68628.19819848922
```

This is better than nothing, but clearly not a great score: most districts' median_hous ing_values range between \$120,000 and \$265,000, so a typical prediction error of \$68,628 is not very satisfying. This is an example of a model underfitting the training data. When this happens it can mean that the features do not provide enough