
BASICS FOR MACHINE LEARNING 

1. Basics of NumPy Arrays 

NumPy arrays (ndarray) are the foundation of numerical computing in Python. Unlike Python 

lists, NumPy arrays are homogeneous and support vectorized operations, meaning 

computations happen faster using optimized C backend code. 

Key Features: 

 Fixed size and type (e.g., all elements must be integers, floats, etc.) 

 Multi-dimensional support (1D, 2D, 3D…) 

 Fast element-wise operations 

Example: 

import numpy as np 
 
# 1D array 
arr1 = np.array([1, 2, 3, 4, 5]) 
 
# 2D array 
arr2 = np.array([[1, 2, 3], [4, 5, 6]]) 
 
print(arr1.shape)   # (5,) 
print(arr2.shape)   # (2, 3) 

Relation to Machine Learning : 

In Machine Learning, NumPy arrays are used to represent datasets efficiently — for example, 

representing features and samples in machine learning models: 

 Rows → individual samples 

 Columns → features (like age, income, score, etc.) 

2. Aggregations (Summarizing Data) 

Aggregations compute summary statistics such as sum, mean, min, max, or standard 

deviation across an array or specific axes. 

Common Aggregation Functions: 

 np.sum(), np.mean(), np.std(), np.min(), np.max(), np.median(), np.var() 

Example: 

data = np.array([[10, 20, 30], [40, 50, 60]]) 



 
print(np.sum(data))       # 210 
print(np.mean(data))      # 35.0 
print(np.max(data, axis=0))  # [40, 50, 60] 
print(np.min(data, axis=1))  # [10, 40] 

Relation to Machine Learning : 

Aggregation functions are used to get insights from data: 

 Mean age of customers 
 Standard deviation of prices 
 Maximum sales in each region 

They are the foundation of exploratory data analysis (EDA). 

3. Computations on Arrays (Vectorized Operations) 

Vectorization means applying operations directly to arrays without explicit loops. NumPy 

executes these operations at compiled C speed. 

Example: 

arr = np.array([1, 2, 3, 4, 5]) 
 
# Element-wise arithmetic 
print(arr + 10)  # [11 12 13 14 15] 
print(arr * 2)   # [ 2  4  6  8 10] 
print(arr ** 2)  # [ 1  4  9 16 25] 

Relation to Machine Learning : 

Vectorized operations allow for fast feature transformations, e.g.: 

 Normalizing features: (x - mean) / std 

 Scaling images or sensor data 

 Performing linear algebra operations in ML algorithms (matrix multiplication) 

4. Comparisons, Masks, and Boolean Logic 

NumPy allows element-wise comparisons that return Boolean arrays. These arrays can be 

used to create masks (filters) to select or modify data. 

Example: 

data = np.array([10, 20, 30, 40, 50]) 
 
# Element-wise comparison 
mask = data > 25 



print(mask)            # [False False  True  True  True] 
 
# Applying mask 
filtered = data[mask] 
print(filtered)        # [30 40 50] 

Boolean logic: 
You can combine multiple conditions using: 

 & → and 
 | → or 
 ~ → not 

Example: 

mask = (data > 20) & (data < 50) 
print(data[mask])  # [30 40] 

Relation to Machine Learning : 

Used for data filtering and conditional selection, for example: 

 Select all rows where income > 50,000 and age < 30 
 Filter outliers or missing data 

5. Fancy Indexing 

Fancy indexing allows you to access elements of an array using integer arrays or lists of 

indices rather than slices. 

Example: 

arr = np.array([100, 200, 300, 400, 500]) 
 
indices = [0, 2, 4] 
print(arr[indices])  # [100 300 500] 
 
# For 2D arrays 
matrix = np.arange(12).reshape(3, 4) 
print(matrix[[0, 2], [1, 3]])  # [ 1 11 ] 

Relation to Machine Learning : 

Fancy indexing is used to: 

 Extract specific samples or features from datasets 
 Shuffle or sample data randomly during training 
 Perform advanced selection in multi-dimensional data (e.g., pixel extraction from 

images) 

6. Structured Arrays 



Structured arrays allow you to store heterogeneous data (like a table with columns of different 

data types) within a single NumPy array — similar to a database record or a Pandas 

DataFrame. 

Example: 

student_data = np.array([ 
    (1, 'Alice', 85.5), 
    (2, 'Bob', 90.2), 
    (3, 'Charlie', 78.9) 
], dtype=[('id', 'i4'), ('name', 'U10'), ('score', 'f4')]) 
 
print(student_data['name'])   # ['Alice' 'Bob' 'Charlie'] 
print(student_data['score'] > 80)  # [ True  True False] 

Relation to Machine Learning : 

Structured arrays can represent tabular datasets before converting to Pandas DataFrames. 

They’re useful when handling sensor data, financial records, or experiment results with 

multiple attributes. 

Summary Table – NumPy Topics and Machine Learning  Applications 

NumPy Concept Core Idea Machine Learning  Application 

Arrays Homogeneous, efficient data 
structures 

Store numerical datasets 
efficiently 

Aggregations Summarize data Compute mean, std, sum for 
analytics 

Computations Vectorized math operations Feature scaling, transformations 

Masks & Boolean 
Logic 

Conditional filtering Data cleaning, selecting subsets 

Fancy Indexing Advanced indexing using 
integer arrays 

Sampling, feature extraction 

Structured Arrays Heterogeneous tabular data Represent datasets with multiple 
attributes 

 

Example: Machine Learning  Workflow 

import numpy as np 
 
# Step 1: Create synthetic dataset 
age = np.array([22, 35, 58, 45, 33, 26]) 
income = np.array([25000, 50000, 80000, 62000, 45000, 30000]) 
 
# Step 2: Aggregations 
print("Average Income:", np.mean(income)) 
 
# Step 3: Computations (normalize) 
income_norm = (income - np.min(income)) / (np.max(income) - np.min(income)) 



 
# Step 4: Comparisons and Masks (filter) 
mask = (age < 40) & (income > 30000) 
print("Selected incomes:", income[mask]) 
 
# Step 5: Fancy indexing (pick random 3 samples) 
indices = np.random.choice(len(age), 3, replace=False) 
print("Random sample ages:", age[indices]) 
 
# Step 6: Structured array 
customers = np.array(list(zip(age, income)), 
                     dtype=[('age', 'i4'), ('income', 'f4')]) 
print(customers['income'] > 50000) 

This example simulates a small data analysis task — summarizing, normalizing, filtering, 

sampling, and structuring customer data — all essential operations in data preprocessing and 

feature engineering for Machine Learning . 

1. Basics of Data Manipulation with Pandas 

Pandas is a Python library built on top of NumPy for handling and analyzing tabular and 

labeled data efficiently. Its two core structures are: 

 Series → 1D labeled array 
 DataFrame → 2D labeled data (like a spreadsheet or SQL table) 

Example: 

import pandas as pd 
 
# Creating a Series 
s = pd.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd']) 
 
# Creating a DataFrame 
data = { 
    'Name': ['Alice', 'Bob', 'Charlie'], 
    'Age': [25, 30, 35], 
    'Salary': [50000, 60000, 70000] 
} 
df = pd.DataFrame(data) 
print(df) 

Output: 

      Name  Age  Salary 
0    Alice   25   50000 
1      Bob   30   60000 
2  Charlie   35   70000 
  



In Machine Learning : 

DataFrames are the foundation of data analysis. They are used to: 

 Load data from CSV, Excel, SQL, or APIs 

 Clean, transform, and prepare data for modeling 

 Perform Exploratory Data Analysis (EDA) 

2. Data Indexing and Selection 

Indexing helps access, filter, and modify subsets of data efficiently. 

 .loc[] → label-based selection 

 .iloc[] → integer-based selection 

 Boolean indexing → conditional selection 

Example: 

print(df.loc[1])                # Select row with index label 1 
print(df.iloc[0:2])             # Select first two rows 
print(df[df['Salary'] > 55000]) # Conditional selection 
 

In Machine Learning : 

Used for data exploration and feature selection, e.g.: 

 Selecting rows with missing values 

 Extracting records for a particular group (e.g., customers above 40 years) 

3. Operating on Data 

Pandas allows vectorized operations and functions on entire columns or rows, similar to 

NumPy but with labeled data. 

 Arithmetic: +, -, *, / 

 Statistical: .mean(), .sum(), .std() 

 Applying custom functions: .apply() 

Example: 

df['Bonus'] = df['Salary'] * 0.10 
df['New_Salary'] = df['Salary'] + df['Bonus'] 
 
# Using apply() 
df['Age_Group'] = df['Age'].apply(lambda x: 'Young' if x < 30 else 'Senior') 
print(df) 



In Machine Learning : 

Used for feature engineering — creating new columns or features from existing data (e.g., 

normalized values, risk categories, etc.) 

4. Handling Missing Data 

Real-world data is often incomplete or inconsistent. Pandas provides tools to detect, 

remove, or fill missing values. 

 df.isnull() → Detect missing values 

 df.dropna() → Remove missing rows/columns 

 df.fillna(value) → Replace missing values 

Example: 

data = {'Name': ['Alice', 'Bob', 'Charlie'], 

        'Age': [25, None, 35], 

        'Salary': [50000, 60000, None]} 

df = pd.DataFrame(data) 

 

print(df.isnull())        # Check missing values 

df['Age'] = df['Age'].fillna(df['Age'].mean())  # Fill with mean 

df = df.dropna(subset=['Salary'])               # Drop rows missing Salary 

print(df) 

In Machine Learning : 

Cleaning missing data is part of data preprocessing, essential before model training to 

prevent bias and errors. 

5. Hierarchical Indexing (MultiIndex) 

Hierarchical or Multi-level indexing allows multiple index levels (like a composite key). Useful 

for representing multi-dimensional data compactly. 

Example: 

arrays = [ 

    ['India', 'India', 'USA', 'USA'], 

    ['2023', '2024', '2023', '2024'] 

] 



index = pd.MultiIndex.from_arrays(arrays, names=('Country', 'Year')) 

data = pd.DataFrame({'GDP': [3.5, 3.7, 2.9, 3.0]}, index=index) 

print(data) 

Output: 

Country   Year       GDP  
India     2023    3.5 
          2024    3.7 
USA       2023    2.9 
          2024    3.0 
 
In Machine Learning : 

 
Representing panel data (multi-dimensional time series) 
Stock market data (Company × Year) 
Organizing grouped results in analytics 

 

6. Combining Datasets 

Combining datasets is critical when merging data from multiple sources — like joining tables 

in SQL. 

 pd.concat() → Stack datasets vertically or horizontally 
 pd.merge() → SQL-style joins (inner, left, right, outer) 
 df.join() → Simplified join on indices 

Example: 

df1 = pd.DataFrame({'ID': [1, 2, 3], 'Name': ['Alice', 'Bob', 'Charlie']}) 
df2 = pd.DataFrame({'ID': [1, 2, 3], 'Salary': [50000, 60000, 70000]}) 
 
merged = pd.merge(df1, df2, on='ID') 
print(merged) 

In Machine Learning : 

Used for data integration: 

 Combining customer demographics with transaction data 
 Merging training and testing datasets 
 Integrating external APIs or CSV data sources 

7. Aggregation and Grouping 

Grouping allows you to split data into groups, apply operations, and combine results — the 

split-apply-combine strategy. 

 .groupby() for grouping data 



 .agg() for applying multiple aggregation functions 

Example: 

data = {'Department': ['IT', 'HR', 'IT', 'HR', 'Sales'], 
        'Salary': [60000, 50000, 65000, 48000, 55000]} 
df = pd.DataFrame(data) 
 
grouped = df.groupby('Department')['Salary'].mean() 
print(grouped) 
 
# Multiple aggregations 
agg = df.groupby('Department')['Salary'].agg(['min', 'max', 'mean']) 
print(agg) 

Output: 

Department 
HR      49000.0 
IT      62500.0 
Sales   55000.0 

In Machine Learning : 

Used for data summarization and feature extraction, e.g.: 

 Average sales by region 
 Mean income per age group 
 Aggregated metrics for model features 

8. Pivot Tables 

Pivot tables reshape data — similar to Excel — to summarize information using grouping and 

aggregation. 

pd.pivot_table(data, values, index, columns, aggfunc) 

Example: 

data = { 
    'Department': ['IT', 'HR', 'IT', 'HR', 'Sales'], 
    'Year': [2023, 2023, 2024, 2024, 2024], 
    'Salary': [60000, 50000, 65000, 48000, 55000] 
} 
df = pd.DataFrame(data) 
 
pivot = pd.pivot_table(df, values='Salary', index='Department', 
                       columns='Year', aggfunc='mean') 
print(pivot) 

Output: 



Year        2023     2024 
Department                  
HR       50000.0  48000.0 
IT       60000.0  65000.0 
Sales        NaN  55000.0 

 

In Machine Learning : 

Pivot tables are used for: 

 Summarizing large datasets for reporting 
 Creating feature tables for ML (e.g., average purchase per year) 
 Quick exploratory analysis 

Pandas Topics and Machine Learning  Applications 

Concept Core Idea Machine Learning  Relevance 

Data Manipulation Load, edit, and analyze 
tabular data 

Foundation of all data analysis 
tasks 

Indexing & Selection Accessing subsets of data Data filtering and extraction 

Operating on Data Vectorized operations on 
columns 

Feature engineering 

Missing Data Handle null or incomplete 
values 

Data cleaning and 
preprocessing 

Hierarchical Indexing Multi-level index Multi-dimensional analytics 

Combining Datasets Merge/join multiple datasets Data integration from various 
sources 

Aggregation & 
Grouping 

Summarize groups EDA and statistical summaries 

Pivot Tables Reshape and summarize data Business analytics and 
visualization 

Example Code 

import pandas as pd 
 
# Step 1: Load sample data 
data = { 
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'], 
    'Department': ['IT', 'HR', 'IT', 'HR', 'Sales'], 
    'Salary': [60000, 50000, 65000, None, 55000], 
    'Experience': [2, 5, 7, 3, 4] 
} 
df = pd.DataFrame(data) 
 
# Step 2: Handle missing data 
df['Salary'].fillna(df['Salary'].mean(), inplace=True) 
 
# Step 3: Feature engineering 
df['Bonus'] = df['Salary'] * 0.1 
df['Level'] = df['Experience'].apply(lambda x: 'Junior' if x < 5 else 'Senior') 



 
# Step 4: Grouping and aggregation 
summary = df.groupby('Department')['Salary'].agg(['mean', 'max', 'count']) 
 
# Step 5: Pivot for reporting 
pivot = pd.pivot_table(df, values='Salary', index='Level', columns='Department') 
 
print(summary) 
print(pivot) 

This example simulates a complete data manipulation workflow — cleaning, transformation, 

grouping, and summarization — all key steps before building data science or machine 

learning models. 

 

 

 

 


