
BASICS FOR MACHINE LEARNING

1. Basics of NumPy Arrays

NumPy arrays (ndarray) are the foundation of numerical computing in Python. Unlike Python

lists, NumPy arrays are homogeneous and support vectorized operations, meaning

computations happen faster using optimized C backend code.

Key Features:

 Fixed size and type (e.g., all elements must be integers, floats, etc.)

 Multi-dimensional support (1D, 2D, 3D…)

 Fast element-wise operations

Example:

import numpy as np

1D array
arr1 = np.array([1, 2, 3, 4, 5])

2D array
arr2 = np.array([[1, 2, 3], [4, 5, 6]])

print(arr1.shape) # (5,)
print(arr2.shape) # (2, 3)

Relation to Machine Learning :

In Machine Learning, NumPy arrays are used to represent datasets efficiently — for example,

representing features and samples in machine learning models:

 Rows → individual samples

 Columns → features (like age, income, score, etc.)

2. Aggregations (Summarizing Data)

Aggregations compute summary statistics such as sum, mean, min, max, or standard

deviation across an array or specific axes.

Common Aggregation Functions:

 np.sum(), np.mean(), np.std(), np.min(), np.max(), np.median(), np.var()

Example:

data = np.array([[10, 20, 30], [40, 50, 60]])

print(np.sum(data)) # 210
print(np.mean(data)) # 35.0
print(np.max(data, axis=0)) # [40, 50, 60]
print(np.min(data, axis=1)) # [10, 40]

Relation to Machine Learning :

Aggregation functions are used to get insights from data:

 Mean age of customers
 Standard deviation of prices
 Maximum sales in each region

They are the foundation of exploratory data analysis (EDA).

3. Computations on Arrays (Vectorized Operations)

Vectorization means applying operations directly to arrays without explicit loops. NumPy

executes these operations at compiled C speed.

Example:

arr = np.array([1, 2, 3, 4, 5])

Element-wise arithmetic
print(arr + 10) # [11 12 13 14 15]
print(arr * 2) # [2 4 6 8 10]
print(arr ** 2) # [1 4 9 16 25]

Relation to Machine Learning :

Vectorized operations allow for fast feature transformations, e.g.:

 Normalizing features: (x - mean) / std

 Scaling images or sensor data

 Performing linear algebra operations in ML algorithms (matrix multiplication)

4. Comparisons, Masks, and Boolean Logic

NumPy allows element-wise comparisons that return Boolean arrays. These arrays can be

used to create masks (filters) to select or modify data.

Example:

data = np.array([10, 20, 30, 40, 50])

Element-wise comparison
mask = data > 25

print(mask) # [False False True True True]

Applying mask
filtered = data[mask]
print(filtered) # [30 40 50]

Boolean logic:
You can combine multiple conditions using:

 & → and
 | → or
 ~ → not

Example:

mask = (data > 20) & (data < 50)
print(data[mask]) # [30 40]

Relation to Machine Learning :

Used for data filtering and conditional selection, for example:

 Select all rows where income > 50,000 and age < 30
 Filter outliers or missing data

5. Fancy Indexing

Fancy indexing allows you to access elements of an array using integer arrays or lists of

indices rather than slices.

Example:

arr = np.array([100, 200, 300, 400, 500])

indices = [0, 2, 4]
print(arr[indices]) # [100 300 500]

For 2D arrays
matrix = np.arange(12).reshape(3, 4)
print(matrix[[0, 2], [1, 3]]) # [1 11]

Relation to Machine Learning :

Fancy indexing is used to:

 Extract specific samples or features from datasets
 Shuffle or sample data randomly during training
 Perform advanced selection in multi-dimensional data (e.g., pixel extraction from

images)

6. Structured Arrays

Structured arrays allow you to store heterogeneous data (like a table with columns of different

data types) within a single NumPy array — similar to a database record or a Pandas

DataFrame.

Example:

student_data = np.array([
 (1, 'Alice', 85.5),
 (2, 'Bob', 90.2),
 (3, 'Charlie', 78.9)
], dtype=[('id', 'i4'), ('name', 'U10'), ('score', 'f4')])

print(student_data['name']) # ['Alice' 'Bob' 'Charlie']
print(student_data['score'] > 80) # [True True False]

Relation to Machine Learning :

Structured arrays can represent tabular datasets before converting to Pandas DataFrames.

They’re useful when handling sensor data, financial records, or experiment results with

multiple attributes.

Summary Table – NumPy Topics and Machine Learning Applications

NumPy Concept Core Idea Machine Learning Application

Arrays Homogeneous, efficient data
structures

Store numerical datasets
efficiently

Aggregations Summarize data Compute mean, std, sum for
analytics

Computations Vectorized math operations Feature scaling, transformations

Masks & Boolean
Logic

Conditional filtering Data cleaning, selecting subsets

Fancy Indexing Advanced indexing using
integer arrays

Sampling, feature extraction

Structured Arrays Heterogeneous tabular data Represent datasets with multiple
attributes

Example: Machine Learning Workflow

import numpy as np

Step 1: Create synthetic dataset
age = np.array([22, 35, 58, 45, 33, 26])
income = np.array([25000, 50000, 80000, 62000, 45000, 30000])

Step 2: Aggregations
print("Average Income:", np.mean(income))

Step 3: Computations (normalize)
income_norm = (income - np.min(income)) / (np.max(income) - np.min(income))

Step 4: Comparisons and Masks (filter)
mask = (age < 40) & (income > 30000)
print("Selected incomes:", income[mask])

Step 5: Fancy indexing (pick random 3 samples)
indices = np.random.choice(len(age), 3, replace=False)
print("Random sample ages:", age[indices])

Step 6: Structured array
customers = np.array(list(zip(age, income)),
 dtype=[('age', 'i4'), ('income', 'f4')])
print(customers['income'] > 50000)

This example simulates a small data analysis task — summarizing, normalizing, filtering,

sampling, and structuring customer data — all essential operations in data preprocessing and

feature engineering for Machine Learning .

1. Basics of Data Manipulation with Pandas

Pandas is a Python library built on top of NumPy for handling and analyzing tabular and

labeled data efficiently. Its two core structures are:

 Series → 1D labeled array
 DataFrame → 2D labeled data (like a spreadsheet or SQL table)

Example:

import pandas as pd

Creating a Series
s = pd.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd'])

Creating a DataFrame
data = {
 'Name': ['Alice', 'Bob', 'Charlie'],
 'Age': [25, 30, 35],
 'Salary': [50000, 60000, 70000]
}
df = pd.DataFrame(data)
print(df)

Output:

 Name Age Salary
0 Alice 25 50000
1 Bob 30 60000
2 Charlie 35 70000

In Machine Learning :

DataFrames are the foundation of data analysis. They are used to:

 Load data from CSV, Excel, SQL, or APIs

 Clean, transform, and prepare data for modeling

 Perform Exploratory Data Analysis (EDA)

2. Data Indexing and Selection

Indexing helps access, filter, and modify subsets of data efficiently.

 .loc[] → label-based selection

 .iloc[] → integer-based selection

 Boolean indexing → conditional selection

Example:

print(df.loc[1]) # Select row with index label 1
print(df.iloc[0:2]) # Select first two rows
print(df[df['Salary'] > 55000]) # Conditional selection

In Machine Learning :

Used for data exploration and feature selection, e.g.:

 Selecting rows with missing values

 Extracting records for a particular group (e.g., customers above 40 years)

3. Operating on Data

Pandas allows vectorized operations and functions on entire columns or rows, similar to

NumPy but with labeled data.

 Arithmetic: +, -, *, /

 Statistical: .mean(), .sum(), .std()

 Applying custom functions: .apply()

Example:

df['Bonus'] = df['Salary'] * 0.10
df['New_Salary'] = df['Salary'] + df['Bonus']

Using apply()
df['Age_Group'] = df['Age'].apply(lambda x: 'Young' if x < 30 else 'Senior')
print(df)

In Machine Learning :

Used for feature engineering — creating new columns or features from existing data (e.g.,

normalized values, risk categories, etc.)

4. Handling Missing Data

Real-world data is often incomplete or inconsistent. Pandas provides tools to detect,

remove, or fill missing values.

 df.isnull() → Detect missing values

 df.dropna() → Remove missing rows/columns

 df.fillna(value) → Replace missing values

Example:

data = {'Name': ['Alice', 'Bob', 'Charlie'],

 'Age': [25, None, 35],

 'Salary': [50000, 60000, None]}

df = pd.DataFrame(data)

print(df.isnull()) # Check missing values

df['Age'] = df['Age'].fillna(df['Age'].mean()) # Fill with mean

df = df.dropna(subset=['Salary']) # Drop rows missing Salary

print(df)

In Machine Learning :

Cleaning missing data is part of data preprocessing, essential before model training to

prevent bias and errors.

5. Hierarchical Indexing (MultiIndex)

Hierarchical or Multi-level indexing allows multiple index levels (like a composite key). Useful

for representing multi-dimensional data compactly.

Example:

arrays = [

 ['India', 'India', 'USA', 'USA'],

 ['2023', '2024', '2023', '2024']

]

index = pd.MultiIndex.from_arrays(arrays, names=('Country', 'Year'))

data = pd.DataFrame({'GDP': [3.5, 3.7, 2.9, 3.0]}, index=index)

print(data)

Output:

Country Year GDP
India 2023 3.5
 2024 3.7
USA 2023 2.9
 2024 3.0

In Machine Learning :

Representing panel data (multi-dimensional time series)
Stock market data (Company × Year)
Organizing grouped results in analytics

6. Combining Datasets

Combining datasets is critical when merging data from multiple sources — like joining tables

in SQL.

 pd.concat() → Stack datasets vertically or horizontally
 pd.merge() → SQL-style joins (inner, left, right, outer)
 df.join() → Simplified join on indices

Example:

df1 = pd.DataFrame({'ID': [1, 2, 3], 'Name': ['Alice', 'Bob', 'Charlie']})
df2 = pd.DataFrame({'ID': [1, 2, 3], 'Salary': [50000, 60000, 70000]})

merged = pd.merge(df1, df2, on='ID')
print(merged)

In Machine Learning :

Used for data integration:

 Combining customer demographics with transaction data
 Merging training and testing datasets
 Integrating external APIs or CSV data sources

7. Aggregation and Grouping

Grouping allows you to split data into groups, apply operations, and combine results — the

split-apply-combine strategy.

 .groupby() for grouping data

 .agg() for applying multiple aggregation functions

Example:

data = {'Department': ['IT', 'HR', 'IT', 'HR', 'Sales'],
 'Salary': [60000, 50000, 65000, 48000, 55000]}
df = pd.DataFrame(data)

grouped = df.groupby('Department')['Salary'].mean()
print(grouped)

Multiple aggregations
agg = df.groupby('Department')['Salary'].agg(['min', 'max', 'mean'])
print(agg)

Output:

Department
HR 49000.0
IT 62500.0
Sales 55000.0

In Machine Learning :

Used for data summarization and feature extraction, e.g.:

 Average sales by region
 Mean income per age group
 Aggregated metrics for model features

8. Pivot Tables

Pivot tables reshape data — similar to Excel — to summarize information using grouping and

aggregation.

pd.pivot_table(data, values, index, columns, aggfunc)

Example:

data = {
 'Department': ['IT', 'HR', 'IT', 'HR', 'Sales'],
 'Year': [2023, 2023, 2024, 2024, 2024],
 'Salary': [60000, 50000, 65000, 48000, 55000]
}
df = pd.DataFrame(data)

pivot = pd.pivot_table(df, values='Salary', index='Department',
 columns='Year', aggfunc='mean')
print(pivot)

Output:

Year 2023 2024
Department
HR 50000.0 48000.0
IT 60000.0 65000.0
Sales NaN 55000.0

In Machine Learning :

Pivot tables are used for:

 Summarizing large datasets for reporting
 Creating feature tables for ML (e.g., average purchase per year)
 Quick exploratory analysis

Pandas Topics and Machine Learning Applications

Concept Core Idea Machine Learning Relevance

Data Manipulation Load, edit, and analyze
tabular data

Foundation of all data analysis
tasks

Indexing & Selection Accessing subsets of data Data filtering and extraction

Operating on Data Vectorized operations on
columns

Feature engineering

Missing Data Handle null or incomplete
values

Data cleaning and
preprocessing

Hierarchical Indexing Multi-level index Multi-dimensional analytics

Combining Datasets Merge/join multiple datasets Data integration from various
sources

Aggregation &
Grouping

Summarize groups EDA and statistical summaries

Pivot Tables Reshape and summarize data Business analytics and
visualization

Example Code

import pandas as pd

Step 1: Load sample data
data = {
 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
 'Department': ['IT', 'HR', 'IT', 'HR', 'Sales'],
 'Salary': [60000, 50000, 65000, None, 55000],
 'Experience': [2, 5, 7, 3, 4]
}
df = pd.DataFrame(data)

Step 2: Handle missing data
df['Salary'].fillna(df['Salary'].mean(), inplace=True)

Step 3: Feature engineering
df['Bonus'] = df['Salary'] * 0.1
df['Level'] = df['Experience'].apply(lambda x: 'Junior' if x < 5 else 'Senior')

Step 4: Grouping and aggregation
summary = df.groupby('Department')['Salary'].agg(['mean', 'max', 'count'])

Step 5: Pivot for reporting
pivot = pd.pivot_table(df, values='Salary', index='Level', columns='Department')

print(summary)
print(pivot)

This example simulates a complete data manipulation workflow — cleaning, transformation,

grouping, and summarization — all key steps before building data science or machine

learning models.

