
Chapter 9

Evaluate the Performance of Machine
Learning Algorithms with Resampling

You need to know how well your algorithms perform on unseen data. The best way to evaluate
the performance of an algorithm would be to make predictions for new data to which you
already know the answers. The second best way is to use clever techniques from statistics called
resampling methods that allow you to make accurate estimates for how well your algorithm will
perform on new data. In this chapter you will discover how you can estimate the accuracy of
your machine learning algorithms using resampling methods in Python and scikit-learn on the
Pima Indians dataset. Let’s get started.

9.1 Evaluate Machine Learning Algorithms

Why can’t you train your machine learning algorithm on your dataset and use predictions from
this same dataset to evaluate machine learning algorithms? The simple answer is overtting.

Imagine an algorithm that remembers every observation it is shown during training. If you
evaluated your machine learning algorithm on the same dataset used to train the algorithm, then
an algorithm like this would have a perfect score on the training dataset. But the predictions it
made on new data would be terrible. We must evaluate our machine learning algorithms on
data that is not used to train the algorithm.

The evaluation is an estimate that we can use to talk about how well we think the algorithm
may actually do in practice. It is not a guarantee of performance. Once we estimate the
performance of our algorithm, we can then re-train the nal algorithm on the entire training
dataset and get it ready for operational use. Next up we are going to look at four dierent
techniques that we can use to split up our training dataset and create useful estimates of
performance for our machine learning algorithms:

Train and Test Sets.

k-fold Cross Validation.

Leave One Out Cross Validation.

Repeated Random Test-Train Splits.

57

9.2. Split into Train and Test Sets 58

9.2 Split into Train and Test Sets

The simplest method that we can use to evaluate the performance of a machine learning
algorithm is to use dierent training and testing datasets. We can take our original dataset and
split it into two parts. Train the algorithm on the rst part, make predictions on the second
part and evaluate the predictions against the expected results. The size of the split can depend
on the size and specics of your dataset, although it is common to use 67% of the data for
training and the remaining 33% for testing.

This algorithm evaluation technique is very fast. It is ideal for large datasets (millions of
records) where there is strong evidence that both splits of the data are representative of the
underlying problem. Because of the speed, it is useful to use this approach when the algorithm
you are investigating is slow to train. A downside of this technique is that it can have a high
variance. This means that dierences in the training and test dataset can result in meaningful
dierences in the estimate of accuracy. In the example below we split the Pima Indians dataset
into 67%/33% splits for training and test and evaluate the accuracy of a Logistic Regression
model.

Evaluate using a train and a test set

from pandas import read_csv

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

filename = pima-indians-diabetes.data.csv

names = [preg , plas , pres , skin , test , mass , pedi , age , class]

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

test_size = 0.33

seed = 7

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size,

random_state=seed)

model = LogisticRegression()

model.fit(X_train, Y_train)

result = model.score(X_test, Y_test)

print("Accuracy: %.3f%%") % (result*100.0)

Listing 9.1: Example of evaluating an algorithm with a train and test set.

We can see that the estimated accuracy for the model was approximately 75%. Note that
in addition to specifying the size of the split, we also specify the random seed. Because the
split of the data is random, we want to ensure that the results are reproducible. By specifying
the random seed we ensure that we get the same random numbers each time we run the code
and in turn the same split of data. This is important if we want to compare this result to
the estimated accuracy of another machine learning algorithm or the same algorithm with a
dierent conguration. To ensure the comparison was apples-for-apples, we must ensure that
they are trained and tested on exactly the same data.

Accuracy: 75.591%

Listing 9.2: Output of evaluating an algorithm with a train and test set.

9.3. K-fold Cross Validation 59

9.3 K-fold Cross Validation

Cross validation is an approach that you can use to estimate the performance of a machine
learning algorithm with less variance than a single train-test set split. It works by splitting
the dataset into k-parts (e.g. k = 5 or k = 10). Each split of the data is called a fold. The
algorithm is trained on k − 1 folds with one held back and tested on the held back fold. This is
repeated so that each fold of the dataset is given a chance to be the held back test set. After
running cross validation you end up with k dierent performance scores that you can summarize
using a mean and a standard deviation.

The result is a more reliable estimate of the performance of the algorithm on new data. It is
more accurate because the algorithm is trained and evaluated multiple times on dierent data.
The choice of k must allow the size of each test partition to be large enough to be a reasonable
sample of the problem, whilst allowing enough repetitions of the train-test evaluation of the
algorithm to provide a fair estimate of the algorithms performance on unseen data. For modest
sized datasets in the thousands or tens of thousands of records, k values of 3, 5 and 10 are
common. In the example below we use 10-fold cross validation.

Evaluate using Cross Validation

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = pima-indians-diabetes.data.csv

names = [preg , plas , pres , skin , test , mass , pedi , age , class]

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

num_folds = 10

seed = 7

kfold = KFold(n_splits=num_folds, random_state=seed)

model = LogisticRegression()

results = cross_val_score(model, X, Y, cv=kfold)

print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()*100.0, results.std()*100.0)

Listing 9.3: Example of evaluating an algorithm with k-fold Cross Validation.

You can see that we report both the mean and the standard deviation of the performance
measure. When summarizing performance measures, it is a good practice to summarize the
distribution of the measures, in this case assuming a Gaussian distribution of performance (a
very reasonable assumption) and recording the mean and standard deviation.

Accuracy: 76.951% (4.841%)

Listing 9.4: Output of evaluating an algorithm with k-fold Cross Validation.

9.4 Leave One Out Cross Validation

You can congure cross validation so that the size of the fold is 1 (k is set to the number of
observations in your dataset). This variation of cross validation is called leave-one-out cross
validation. The result is a large number of performance measures that can be summarized in

9.5. Repeated Random Test-Train Splits 60

an eort to give a more reasonable estimate of the accuracy of your model on unseen data.
A downside is that it can be a computationally more expensive procedure than k-fold cross
validation. In the example below we use leave-one-out cross validation.

Evaluate using Leave One Out Cross Validation

from pandas import read_csv

from sklearn.model_selection import LeaveOneOut

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = pima-indians-diabetes.data.csv

names = [preg , plas , pres , skin , test , mass , pedi , age , class]

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

num_folds = 10

loocv = LeaveOneOut()

model = LogisticRegression()

results = cross_val_score(model, X, Y, cv=loocv)

print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()*100.0, results.std()*100.0)

Listing 9.5: Example of evaluating an algorithm with Leave One Out Cross Validation.

You can see in the standard deviation that the score has more variance than the k-fold cross
validation results described above.

Accuracy: 76.823% (42.196%)

Listing 9.6: Output of evaluating an algorithm with Leave One Out Cross Validation.

9.5 Repeated Random Test-Train Splits

Another variation on k-fold cross validation is to create a random split of the data like the
train/test split described above, but repeat the process of splitting and evaluation of the
algorithm multiple times, like cross validation. This has the speed of using a train/test split and
the reduction in variance in the estimated performance of k-fold cross validation. You can also
repeat the process many more times as needed to improve the accuracy. A down side is that
repetitions may include much of the same data in the train or the test split from run to run,
introducing redundancy into the evaluation. The example below splits the data into a 67%/33%
train/test split and repeats the process 10 times.

Evaluate using Shuffle Split Cross Validation

from pandas import read_csv

from sklearn.model_selection import ShuffleSplit

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = pima-indians-diabetes.data.csv

names = [preg , plas , pres , skin , test , mass , pedi , age , class]

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

n_splits = 10

test_size = 0.33

9.6. What Techniques to Use When 61

seed = 7

kfold = ShuffleSplit(n_splits=n_splits, test_size=test_size, random_state=seed)

model = LogisticRegression()

results = cross_val_score(model, X, Y, cv=kfold)

print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()*100.0, results.std()*100.0)

Listing 9.7: Example of evaluating an algorithm with Shue Split Cross Validation.

We can see that in this case the distribution of the performance measure is on par with
k-fold cross validation above.

Accuracy: 76.496% (1.698%)

Listing 9.8: Output of evaluating an algorithm with Shue Split Cross Validation.

9.6 What Techniques to Use When

This section lists some tips to consider what resampling technique to use in dierent circum-
stances.

Generally k-fold cross validation is the gold standard for evaluating the performance of a
machine learning algorithm on unseen data with k set to 3, 5, or 10.

Using a train/test split is good for speed when using a slow algorithm and produces
performance estimates with lower bias when using large datasets.

Techniques like leave-one-out cross validation and repeated random splits can be useful
intermediates when trying to balance variance in the estimated performance, model
training speed and dataset size.

The best advice is to experiment and nd a technique for your problem that is fast and
produces reasonable estimates of performance that you can use to make decisions. If in doubt,
use 10-fold cross validation.

9.7 Summary

In this chapter you discovered statistical techniques that you can use to estimate the performance
of your machine learning algorithms, called resampling. Specically, you learned about:

Train and Test Sets.

Cross Validation.

Leave One Out Cross Validation.

Repeated Random Test-Train Splits.

9.7.1 Next

In the next section you will learn how you can evaluate the performance of classication and
regression algorithms using a suite of dierent metrics and built in evaluation reports.

Chapter 10

Machine Learning Algorithm
Performance Metrics

The metrics that you choose to evaluate your machine learning algorithms are very important.
Choice of metrics inuences how the performance of machine learning algorithms is measured
and compared. They inuence how you weight the importance of dierent characteristics in
the results and your ultimate choice of which algorithm to choose. In this chapter you will
discover how to select and use dierent machine learning performance metrics in Python with
scikit-learn. Let’s get started.

10.1 Algorithm Evaluation Metrics

In this lesson, various dierent algorithm evaluation metrics are demonstrated for both classi-
cation and regression type machine learning problems. In each recipe, the dataset is downloaded
directly from the UCI Machine Learning repository.

For classication metrics, the Pima Indians onset of diabetes dataset is used as demon-
stration. This is a binary classication problem where all of the input variables are
numeric.

For regression metrics, the Boston House Price dataset is used as demonstration. this is a
regression problem where all of the input variables are also numeric.

All recipes evaluate the same algorithms, Logistic Regression for classication and Linear
Regression for the regression problems. A 10-fold cross validation test harness is used to
demonstrate each metric, because this is the most likely scenario you will use when employing
dierent algorithm evaluation metrics.

A caveat in these recipes is the cross validation.cross val score function1 used to
report the performance in each recipe. It does allow the use of dierent scoring metrics
that will be discussed, but all scores are reported so that they can be sorted in ascending
order (largest score is best). Some evaluation metrics (like mean squared error) are naturally
descending scores (the smallest score is best) and as such are reported as negative by the

1http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.cross_val_

score.html

62

10.2. Classication Metrics 63

cross validation.cross val score() function. This is important to note, because some
scores will be reported as negative that by denition can never be negative. I will remind you
about this caveat as we work through the lesson.

You can learn more about machine learning algorithm performance metrics supported by
scikit-learn on the page Model evaluation: quantifying the quality of predictions2. Let’s get on
with the evaluation metrics.

10.2 Classication Metrics

Classication problems are perhaps the most common type of machine learning problem and as
such there are a myriad of metrics that can be used to evaluate predictions for these problems.
In this section we will review how to use the following metrics:

Classication Accuracy.

Logarithmic Loss.

Area Under ROC Curve.

Confusion Matrix.

Classication Report.

10.2.1 Classication Accuracy

Classication accuracy is the number of correct predictions made as a ratio of all predictions
made. This is the most common evaluation metric for classication problems, it is also the most
misused. It is really only suitable when there are an equal number of observations in each class
(which is rarely the case) and that all predictions and prediction errors are equally important,
which is often not the case. Below is an example of calculating classication accuracy.

Cross Validation Classification Accuracy

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = pima-indians-diabetes.data.csv

names = [preg , plas , pres , skin , test , mass , pedi , age , class]

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

kfold = KFold(n_splits=10, random_state=7)

model = LogisticRegression()

scoring = accuracy

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print("Accuracy: %.3f (%.3f)") % (results.mean(), results.std())

Listing 10.1: Example of evaluating an algorithm by classication accuracy.

2http://scikit-learn.org/stable/modules/model_evaluation.html

10.2. Classication Metrics 64

You can see that the ratio is reported. This can be converted into a percentage by multiplying
the value by 100, giving an accuracy score of approximately 77% accurate.

Accuracy: 0.770 (0.048)

Listing 10.2: Output of evaluating an algorithm by classication accuracy.

10.2.2 Logarithmic Loss

Logarithmic loss (or logloss) is a performance metric for evaluating the predictions of probabilities
of membership to a given class. The scalar probability between 0 and 1 can be seen as a measure
of condence for a prediction by an algorithm. Predictions that are correct or incorrect are
rewarded or punished proportionally to the condence of the prediction. Below is an example
of calculating logloss for Logistic regression predictions on the Pima Indians onset of diabetes
dataset.

Cross Validation Classification LogLoss

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = pima-indians-diabetes.data.csv

names = [preg , plas , pres , skin , test , mass , pedi , age , class]

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

kfold = KFold(n_splits=10, random_state=7)

model = LogisticRegression()

scoring = neg_log_loss

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print("Logloss: %.3f (%.3f)") % (results.mean(), results.std())

Listing 10.3: Example of evaluating an algorithm by logloss.

Smaller logloss is better with 0 representing a perfect logloss. As mentioned above, the
measure is inverted to be ascending when using the cross val score() function.

Logloss: -0.493 (0.047)

Listing 10.4: Output of evaluating an algorithm by logloss.

10.2.3 Area Under ROC Curve

Area under ROC Curve (or AUC for short) is a performance metric for binary classication
problems. The AUC represents a model’s ability to discriminate between positive and negative
classes. An area of 1.0 represents a model that made all predictions perfectly. An area of
0.5 represents a model that is as good as random. ROC can be broken down into sensitivity
and specicity. A binary classication problem is really a trade-o between sensitivity and
specicity.

Sensitivity is the true positive rate also called the recall. It is the number of instances
from the positive (rst) class that actually predicted correctly.

10.2. Classication Metrics 65

Specicity is also called the true negative rate. Is the number of instances from the
negative (second) class that were actually predicted correctly.

The example below provides a demonstration of calculating AUC.

Cross Validation Classification ROC AUC

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = pima-indians-diabetes.data.csv

names = [preg , plas , pres , skin , test , mass , pedi , age , class]

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

kfold = KFold(n_splits=10, random_state=7)

model = LogisticRegression()

scoring = roc_auc

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print("AUC: %.3f (%.3f)") % (results.mean(), results.std())

Listing 10.5: Example of evaluating an algorithm by AUC.

You can see the AUC is relatively close to 1 and greater than 0.5, suggesting some skill in
the predictions

AUC: 0.824 (0.041)

Listing 10.6: Output of evaluating an algorithm by AUC.

10.2.4 Confusion Matrix

The confusion matrix is a handy presentation of the accuracy of a model with two or more
classes. The table presents predictions on the x-axis and accuracy outcomes on the y-axis. The
cells of the table are the number of predictions made by a machine learning algorithm. For
example, a machine learning algorithm can predict 0 or 1 and each prediction may actually have
been a 0 or 1. Predictions for 0 that were actually 0 appear in the cell for prediction = 0 and
actual = 0, whereas predictions for 0 that were actually 1 appear in the cell for prediction = 0
and actual = 1. And so on. Below is an example of calculating a confusion matrix for a set of
predictions by a Logistic Regression on the Pima Indians onset of diabetes dataset.

Cross Validation Classification Confusion Matrix

from pandas import read_csv

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import confusion_matrix

filename = pima-indians-diabetes.data.csv

names = [preg , plas , pres , skin , test , mass , pedi , age , class]

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

test_size = 0.33

10.2. Classication Metrics 66

seed = 7

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size,

random_state=seed)

model = LogisticRegression()

model.fit(X_train, Y_train)

predicted = model.predict(X_test)

matrix = confusion_matrix(Y_test, predicted)

print(matrix)

Listing 10.7: Example of evaluating an algorithm by confusion matrix.

Although the array is printed without headings, you can see that the majority of the
predictions fall on the diagonal line of the matrix (which are correct predictions).

[[141 21]

[41 51]]

Listing 10.8: Output of evaluating an algorithm by confusion matrix.

10.2.5 Classication Report

The scikit-learn library provides a convenience report when working on classication prob-
lems to give you a quick idea of the accuracy of a model using a number of measures. The
classification report() function displays the precision, recall, F1-score and support for each
class. The example below demonstrates the report on the binary classication problem.

Cross Validation Classification Report

from pandas import read_csv

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report

filename = pima-indians-diabetes.data.csv

names = [preg , plas , pres , skin , test , mass , pedi , age , class]

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

test_size = 0.33

seed = 7

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size,

random_state=seed)

model = LogisticRegression()

model.fit(X_train, Y_train)

predicted = model.predict(X_test)

report = classification_report(Y_test, predicted)

print(report)

Listing 10.9: Example of evaluating an algorithm by classication report.

You can see good prediction and recall for the algorithm.

precision recall f1-score support

0.0 0.77 0.87 0.82 162

1.0 0.71 0.55 0.62 92

10.3. Regression Metrics 67

avg / total 0.75 0.76 0.75 254

Listing 10.10: Output of evaluating an algorithm by classication report.

10.3 Regression Metrics

In this section will review 3 of the most common metrics for evaluating predictions on regression
machine learning problems:

Mean Absolute Error.

Mean Squared Error.

R2.

10.3.1 Mean Absolute Error

The Mean Absolute Error (or MAE) is the sum of the absolute dierences between predictions
and actual values. It gives an idea of how wrong the predictions were. The measure gives an
idea of the magnitude of the error, but no idea of the direction (e.g. over or under predicting).
The example below demonstrates calculating mean absolute error on the Boston house price
dataset.

Cross Validation Regression MAE

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LinearRegression

filename = housing.csv

names = [CRIM , ZN , INDUS , CHAS , NOX , RM , AGE , DIS , RAD , TAX , PTRATIO ,

B , LSTAT , MEDV]

dataframe = read_csv(filename, delim_whitespace=True, names=names)

array = dataframe.values

X = array[:,0:13]

Y = array[:,13]

kfold = KFold(n_splits=10, random_state=7)

model = LinearRegression()

scoring = neg_mean_absolute_error

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print("MAE: %.3f (%.3f)") % (results.mean(), results.std())

Listing 10.11: Example of evaluating an algorithm by Mean Absolute Error.

A value of 0 indicates no error or perfect predictions. Like logloss, this metric is inverted by
the cross val score() function.

MAE: -4.005 (2.084)

Listing 10.12: Output of evaluating an algorithm by Mean Absolute Error.

10.3. Regression Metrics 68

10.3.2 Mean Squared Error

The Mean Squared Error (or MSE) is much like the mean absolute error in that it provides a
gross idea of the magnitude of error. Taking the square root of the mean squared error converts
the units back to the original units of the output variable and can be meaningful for description
and presentation. This is called the Root Mean Squared Error (or RMSE). The example below
provides a demonstration of calculating mean squared error.

Cross Validation Regression MSE

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LinearRegression

filename = housing.csv

names = [CRIM , ZN , INDUS , CHAS , NOX , RM , AGE , DIS , RAD , TAX , PTRATIO ,

B , LSTAT , MEDV]

dataframe = read_csv(filename, delim_whitespace=True, names=names)

array = dataframe.values

X = array[:,0:13]

Y = array[:,13]

num_folds = 10

kfold = KFold(n_splits=10, random_state=7)

model = LinearRegression()

scoring = neg_mean_squared_error

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print("MSE: %.3f (%.3f)") % (results.mean(), results.std())

Listing 10.13: Example of evaluating an algorithm by Mean Squared Error.

This metric too is inverted so that the results are increasing. Remember to take the absolute
value before taking the square root if you are interested in calculating the RMSE.

MSE: -34.705 (45.574)

Listing 10.14: Output of evaluating an algorithm by Mean Squared Error.

10.3.3 R2 Metric

The R2 (or R Squared) metric provides an indication of the goodness of t of a set of predictions
to the actual values. In statistical literature this measure is called the coecient of determination.
This is a value between 0 and 1 for no-t and perfect t respectively. The example below
provides a demonstration of calculating the mean R2 for a set of predictions.

Cross Validation Regression R^2

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LinearRegression

filename = housing.csv

names = [CRIM , ZN , INDUS , CHAS , NOX , RM , AGE , DIS , RAD , TAX , PTRATIO ,

B , LSTAT , MEDV]

dataframe = read_csv(filename, delim_whitespace=True, names=names)

array = dataframe.values

X = array[:,0:13]

Y = array[:,13]

10.4. Summary 69

kfold = KFold(n_splits=10, random_state=7)

model = LinearRegression()

scoring = r2

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print("R^2: %.3f (%.3f)") % (results.mean(), results.std())

Listing 10.15: Example of evaluating an algorithm by R Squared.

You can see the predictions have a poor t to the actual values with a value closer to zero
and less than 0.5.

R^2: 0.203 (0.595)

Listing 10.16: Output of evaluating an algorithm by R Squared.

10.4 Summary

In this chapter you discovered metrics that you can use to evaluate your machine learning
algorithms.

You learned about three classication metrics: Accuracy, Logarithmic Loss and Area Under
ROC Curve. You also learned about two convenience methods for classication prediction
results: the Confusion Matrix and the Classication Report. Finally, you also learned about
three metrics for regression problems: Mean Absolute Error, Mean Squared Error and R2.

10.4.1 Next

You now know how to evaluate the performance of machine learning algorithms using a variety
of dierent metrics and how to use those metrics to estimate the performance of algorithms on
new unseen data using resampling. In the next lesson you will start looking at machine learning
algorithms themselves, starting with classication techniques.

