
One of the most common problem data science professionals face is to avoid overfitting. Have 

you come across a situation where your model performed exceptionally well on train data, but 

was not able to predict test data. Or you were on the top of a competition in public leaderboard, 

only to fall hundreds of places in the final rankings? Well – this is the kernel for you!. 
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What is Regularization? 

Before we deep dive into the topic, take a look at this image: 

Have you seen this image before? As we move towards the right in this image, our model tries to 

learn too well the details and the noise from the training data, which ultimately results in poor 

performance on the unseen data. 



In other words, while going towards the right, the complexity of the model increases such that 

the training error reduces but the testing error doesn’t. This is shown in the image below. 

 

If you’ve built a neural network before, you know how complex they are. This makes them more 

prone to overfitting. 

Regularization is a technique which makes slight modifications to the learning algorithm such 

that the model generalizes better. This in turn improves the model’s performance on the unseen 

data as well. 

 

 

 

 

 

 



How does Regularization help reduce 

Overfitting? 

Let’s consider a neural network which is overfitting on the training data. 

If you have studied the concept of regularization in machine learning, you will have a fair idea 

that regularization penalizes the coefficients. In deep learning, it actually penalizes the 

weight matrices of the nodes. 

Assume that our regularization coefficient is so high that some of the weight matrices are nearly 

equal to zero. This will result in a much simpler linear network and slight underfitting of the 

training data. 

Such a large value of the regularization coefficient is not that useful. We need to optimize the 

value of regularization coefficient in order to obtain a well-fitted model as shown in the image 

below.  

#data preprocessing 

import pandas as pd 



#math operations 

import numpy as np 

#machine learning 

 

from sklearn.preprocessing import StandardScaler 

#hyperparameter optimization 

from sklearn.model_selection import GridSearchCV 

#support vector machine model 

from keras import regularizers 

import matplotlib.pyplot as plt 

from PIL import Image 

import numpy as np 

import os 

import cv2 

import keras 

from keras.utils import np_utils 

from keras.models import Sequential 

from keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout 

             

from random import shuffle 

from tqdm import tqdm   

import scipy 

import skimage 

from skimage.transform import resize 

import random 

Using TensorFlow backend. 

data=[] 

labels=[] 

Parasitized=os.listdir("../input/cell_images/cell_images/Parasitized/") 

for a in Parasitized: 

    try: 

        image=cv2.imread("../input/cell_images/cell_images/Parasitized/"+a) 

        image_from_array = Image.fromarray(image, 'RGB') 

        size_image = image_from_array.resize((50, 50)) 

        data.append(np.array(size_image)) 

        labels.append(0) 

    except AttributeError: 

        print("") 

 

Uninfected=os.listdir("../input/cell_images/cell_images/Uninfected/") 

for b in Uninfected: 

    try: 

        image=cv2.imread("../input/cell_images/cell_images/Uninfected/"+b) 

        image_from_array = Image.fromarray(image, 'RGB') 

        size_image = image_from_array.resize((50, 50)) 

        data.append(np.array(size_image)) 

        labels.append(1) 

    except AttributeError: 

        print("") 

 

Cells=np.array(data) 

labels=np.array(labels) 

np.save("Cells",Cells) 

np.save("labels",labels) 

Cells=np.load("Cells.npy") 

labels=np.load("labels.npy") 

s=np.arange(Cells.shape[0]) 



np.random.shuffle(s) 

Cells=Cells[s] 

labels=labels[s] 

num_classes=len(np.unique(labels)) 

len_data=len(Cells) 

(x_train,x_test)=Cells[(int)(0.1*len_data):],Cells[:(int)(0.1*len_data)] 

x_train = x_train.astype('float32')/255 # As we are working on image data we 

are normalizing data by divinding 255. 

x_test = x_test.astype('float32')/255 

train_len=len(x_train) 

test_len=len(x_test) 

(y_train,y_test)=labels[(int)(0.1*len_data):],labels[:(int)(0.1*len_data)] 

#Doing One hot encoding as classifier has multiple classes 

y_train=keras.utils.to_categorical(y_train,num_classes) 

y_test=keras.utils.to_categorical(y_test,num_classes) 

Different Regularization Techniques in Deep 

Learning 

Now that we have an understanding of how regularization helps in reducing overfitting, we’ll 

learn a few different techniques in order to apply regularization in deep learning. 

L2 & L1 regularization 

L1 and L2 are the most common types of regularization. These update the general cost function 

by adding another term known as the regularization term. 

Cost function = Loss (say, binary cross entropy) + Regularization term 

Due to the addition of this regularization term, the values of weight matrices decrease because it 

assumes that a neural network with smaller weight matrices leads to simpler models. Therefore, 

it will also reduce overfitting to quite an extent. 

However, this regularization term differs in L1 and L2. 

In L2, we have:  

Here, lambda is the regularization parameter. It is the hyperparameter whose value is optimized 

for better results. L2 regularization is also known as weight decay as it forces the weights to 

decay towards zero (but not exactly zero). 

In L1, we have: 



 

In this, we penalize the absolute value of the weights. Unlike L2, the weights may be reduced to 

zero here. Hence, it is very useful when we are trying to compress our model. Otherwise, we 

usually prefer L2 over it. 

In keras, we can directly apply regularization to any layer using the regularizers. Below I have 

applied regularizer on dense layer having 500 neurons and relu activation function. 

#creating sequential model 

model=Sequential() 

model.add(Conv2D(filters=16,kernel_size=2,padding="same",activation="relu",in

put_shape=(50,50,3))) 

model.add(MaxPooling2D(pool_size=2)) 

model.add(Conv2D(filters=32,kernel_size=2,padding="same",activation="relu")) 

model.add(MaxPooling2D(pool_size=2)) 

model.add(Conv2D(filters=64,kernel_size=2,padding="same",activation="relu")) 

model.add(MaxPooling2D(pool_size=2)) 

model.add(Flatten()) 

#l2 regularizer 

model.add(Dense(500,kernel_regularizer=regularizers.l2(0.01),activation="relu

")) 

model.add(Dense(2,activation="softmax"))#2 represent output layer neurons  

Note: Here the value 0.01 is the value of regularization parameter, i.e., lambda, which we 

need to optimize further. We can optimize it using the grid-search method. 

Similarly, we can also apply L1 regularization. 

Dropout 

This is the one of the most interesting types of regularization techniques. It also produces very 

good results and is consequently the most frequently used regularization technique in the field of 

deep learning. 



To understand dropout, let’s say our neural network structure is akin to the one shown below: 

 

So what does dropout do? At every iteration, it randomly selects some nodes and removes them 

along with all of their incoming and outgoing connections as shown below. 

 

So each iteration has a different set of nodes and this results in a different set of outputs. It can 

also be thought of as an ensemble technique in machine learning. 



Ensemble models usually perform better than a single model as they capture more randomness. 

Similarly, dropout also performs better than a normal neural network model. 

This probability of choosing how many nodes should be dropped is the hyperparameter of the 

dropout function. As seen in the image above, dropout can be applied to both the hidden layers 

as well as the input layers. 

 

Due to these reasons, dropout is usually preferred when we have a large neural network structure 

in order to introduce more randomness. 

In keras, we can implement dropout using the keras layer. Below is the Dropout 

Implementation. I have introduced dropout of 0.2 as the probability of dropping in my neural 

network architecture after last hidden layer having 64 kernels and after first dense layer having 

500 neurons. 

#creating sequential model 

model=Sequential() 

model.add(Conv2D(filters=16,kernel_size=2,padding="same",activation="relu",in

put_shape=(50,50,3))) 

model.add(MaxPooling2D(pool_size=2)) 

model.add(Conv2D(filters=32,kernel_size=2,padding="same",activation="relu")) 

model.add(MaxPooling2D(pool_size=2)) 

model.add(Conv2D(filters=64,kernel_size=2,padding="same",activation="relu")) 

model.add(MaxPooling2D(pool_size=2)) 

# 1st dropout 

model.add(Dropout(0.2)) 

model.add(Flatten()) 

model.add(Dense(500,activation="relu")) 

# 2nd dropout 

model.add(Dropout(0.2)) 

model.add(Dense(2,activation="softmax"))#2 represent output layer neurons  

 



Data Augmentation 

The simplest way to reduce overfitting is to increase the size of the training data. In machine 

learning, we were not able to increase the size of training data as the labeled data was too costly. 

But, now let’s consider we are dealing with images. In this case, there are a few ways of 

increasing the size of the training data – rotating the image, flipping, scaling, shifting, etc. In the 

below image, some transformation has been done on the handwritten digits dataset. 

 

This technique is known as data augmentation. This usually provides a big leap in improving 

the accuracy of the model. It can be considered as a mandatory trick in order to improve our 

predictions. 

In keras, we can perform all of these transformations using ImageDataGenerator. It has a big 

list of arguments which you you can use to pre-process your training data. 

Below is the implementation code. 

from keras.preprocessing.image import ImageDataGenerator 

 

datagen = ImageDataGenerator( 

        featurewise_center=False,  # set input mean to 0 over the dataset 

        samplewise_center=False,  # set each sample mean to 0 

        featurewise_std_normalization=False,  # divide inputs by std of the 

dataset 

        samplewise_std_normalization=False,  # divide each input by its std 

        zca_whitening=False,  # apply ZCA whitening 

        rotation_range=10,  # randomly rotate images in the range (degrees, 0 

to 180) 

        zoom_range = 0.1, # Randomly zoom image  

        width_shift_range=0.1,  # randomly shift images horizontally 

(fraction of total width) 

        height_shift_range=0.1,  # randomly shift images vertically (fraction 

of total height) 

        horizontal_flip=False,  # randomly flip images 

        vertical_flip=False)  # randomly flip images 

 

datagen.fit(x_train) 



Early stopping 

Early stopping is a kind of cross-validation strategy where we keep one part of the training set as 

the validation set. When we see that the performance on the validation set is getting worse, we 

immediately stop the training on the model. This is known as early stopping. 

In the above image, we will stop training at the 

dotted line since after that our model will start overfitting on the training data. 

In keras, we can apply early stopping using the callbacks function. Below is the implementation 

code for it.I have applied early stopping so that it will stop immendiately if validation error will 

not decreased after 3 epochs. 

from keras.callbacks import EarlyStopping 

earlystop= EarlyStopping(monitor='val_acc', patience=3) 

epochs = 20 #  

batch_size = 256 

Here, monitor denotes the quantity that needs to be monitored and ‘val_err’ denotes the 

validation error. 

Patience denotes the number of epochs with no further improvement after which the training 

will be stopped. For better understanding, let’s take a look at the above image again. After the 

dotted line, each epoch will result in a higher value of validation error. Therefore, 5 epochs after 

the dotted line (since our patience is equal to 3), our model will stop because no further 

improvement is seen. 

Note: It may be possible that after 3 epochs (this is the value defined for patience in 

general), the model starts improving again and the validation error starts decreasing as 

well. Therefore, we need to take extra care while tuning this hyperparameter. 

 



Implementation on Malaria Cell 

Identification with keras 

By this point, you should have a theoretical understanding of the different techniques we have 

gone through. We will now apply this knowledge to our deep learning practice problem – 

Identify Malaria cell. In this problem I will use all the regularization techniques which I have 

discussed earlier i.e., 

1. L1,L2 Regularizer 

2. Dropout 

3. Data Augmentation 

4. Early Stopping 

#creating sequential model 

model=Sequential() 

model.add(Conv2D(filters=16,kernel_size=2,padding="same",activation="relu",in

put_shape=(50,50,3))) 

model.add(MaxPooling2D(pool_size=2)) 

model.add(Conv2D(filters=32,kernel_size=2,padding="same",activation="relu")) 

model.add(MaxPooling2D(pool_size=2)) 

model.add(Conv2D(filters=64,kernel_size=2,padding="same",activation="relu")) 

model.add(MaxPooling2D(pool_size=2)) 

# 1st dropout 

model.add(Dropout(0.2)) 

model.add(Flatten()) 

#l2 regularizer 

model.add(Dense(500,kernel_regularizer=regularizers.l2(0.01),activation="relu

")) 

# 2nd dropout 

model.add(Dropout(0.2)) 

model.add(Dense(2,activation="softmax"))#2 represent output layer neurons  

model.summary() 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

conv2d_7 (Conv2D)            (None, 50, 50, 16)        208        

_________________________________________________________________ 

max_pooling2d_7 (MaxPooling2 (None, 25, 25, 16)        0          

_________________________________________________________________ 

conv2d_8 (Conv2D)            (None, 25, 25, 32)        2080       

_________________________________________________________________ 

max_pooling2d_8 (MaxPooling2 (None, 12, 12, 32)        0          

_________________________________________________________________ 

conv2d_9 (Conv2D)            (None, 12, 12, 64)        8256       

_________________________________________________________________ 

max_pooling2d_9 (MaxPooling2 (None, 6, 6, 64)          0          

_________________________________________________________________ 

dropout_3 (Dropout)          (None, 6, 6, 64)          0          

_________________________________________________________________ 

flatten_3 (Flatten)          (None, 2304)              0          

_________________________________________________________________ 



dense_5 (Dense)              (None, 500)               1152500    

_________________________________________________________________ 

dropout_4 (Dropout)          (None, 500)               0          

_________________________________________________________________ 

dense_6 (Dense)              (None, 2)                 1002       

================================================================= 

Total params: 1,164,046 

Trainable params: 1,164,046 

Non-trainable params: 0 

_________________________________________________________________ 

# Compiling model 

# compile the model with loss as categorical_crossentropy and using adam 

optimizer you can test result by trying RMSProp as well as Momentum 

model.compile(loss='categorical_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

# Fit the model 

history = model.fit_generator(datagen.flow(x_train,y_train, 

batch_size=batch_size), 

                              epochs = epochs, validation_data = 

(x_test,y_test), 

                              verbose = 1, steps_per_epoch=x_train.shape[0] 

// batch_size 

                              , callbacks=[earlystop]) 

Epoch 1/20 

96/96 [==============================] - 37s 384ms/step - loss: 1.8363 - acc: 

0.6534 - val_loss: 0.5456 - val_acc: 0.7572 

Epoch 2/20 

96/96 [==============================] - 35s 365ms/step - loss: 0.4570 - acc: 

0.8349 - val_loss: 0.4226 - val_acc: 0.8726 

Epoch 3/20 

96/96 [==============================] - 35s 365ms/step - loss: 0.3233 - acc: 

0.9018 - val_loss: 0.3744 - val_acc: 0.8940 

Epoch 4/20 

96/96 [==============================] - 35s 362ms/step - loss: 0.2808 - acc: 

0.9165 - val_loss: 0.2909 - val_acc: 0.9136 

Epoch 5/20 

96/96 [==============================] - 35s 367ms/step - loss: 0.2674 - acc: 

0.9218 - val_loss: 0.2328 - val_acc: 0.9379 

Epoch 6/20 

96/96 [==============================] - 35s 368ms/step - loss: 0.2563 - acc: 

0.9309 - val_loss: 0.2461 - val_acc: 0.9310 

Epoch 7/20 

96/96 [==============================] - 35s 364ms/step - loss: 0.2495 - acc: 

0.9344 - val_loss: 0.2504 - val_acc: 0.9336 

Epoch 8/20 

96/96 [==============================] - 34s 359ms/step - loss: 0.2444 - acc: 

0.9387 - val_loss: 0.2672 - val_acc: 0.9314 

!!! we achived 95.10% validation accuracy 

Now plot confusion matrix 

from sklearn.metrics import confusion_matrix 

pred = model.predict(x_test) 

pred = np.argmax(pred,axis = 1)  



y_true = np.argmax(y_test,axis = 1) 

CM = confusion_matrix(y_true, pred) 

from mlxtend.plotting import plot_confusion_matrix 

fig, ax = plot_confusion_matrix(conf_mat=CM ,  figsize=(5, 5)) 

plt.show() 

 

 

 
 
Recall=1298/(1298+87) 

Recall 

0.9371841155234657 

Precision = 1298/(1298+48) 

Precision 

0.9643387815750372 

 


