One of the most common problem data science professionals face is to avoid overfitting. Have
you come across a situation where your model performed exceptionally well on train data, but
was not able to predict test data. Or you were on the top of a competition in public leaderboard,
only to fall hundreds of places in the final rankings? Well — this is the kernel for you!.

Table of Contents

What is Regularization?

How does Regularization help in reducing Overfitting?
3. Different Regularization techniques in Deep Learning
L2 and L1 regularization

o Dropout

o Data augmentation

o Early stopping

N

o

What is Regularization?

Before we deep dive into the topic, take a look at this image:

Y g & Y
o @
o @
o am @ o "
- . O™ g @ :
s ¥ 5) g * 8 .
a® » ™~ 0
> >
X X
Underfitting Just right! overfitting

Have you seen this image before? As we move towards the right in this image, our model tries to
learn too well the details and the noise from the training data, which ultimately results in poor
performance on the unseen data.

In other words, while going towards the right, the complexity of the model increases such that
the training error reduces but the testing error doesn’t. This is shown in the image below.

Training Vs. Test Set Error

Test Set

Optimum Model Complexity

Error

W_‘

Model Complexity

If you’ve built a neural network before, you know how complex they are. This makes them more
prone to overfitting.

Regularization is a technique which makes slight modifications to the learning algorithm such
that the model generalizes better. This in turn improves the model’s performance on the unseen
data as well.

How does Regularization help reduce
Overtitting?

Let’s consider a neural network which is overfitting on the training data.

hidden layers

output laver
\.

wput layer (

Over-fitting

If you have studied the concept of regularization in machine learning, you will have a fair idea
that regularization penalizes the coefficients. In deep learning, it actually penalizes the
weight matrices of the nodes.

Assume that our regularization coefficient is so high that some of the weight matrices are nearly
equal to zero. This will result in a much simpler linear network and slight underfitting of the
training data.

Such a large value of the regularization coefficient is not that useful. We need to optimize the
value of regularization coefficient in order to obtain a well-fitted model as shown in the image

Appropriate-fitting
below.

#data preprocessing
import pandas as pd

#math operations
import numpy as np
#machine learning

from sklearn.preprocessing import StandardScaler
#hyperparameter optimization

from sklearn.model selection import GridSearchCV
#support vector machine model

from keras import regularizers

import matplotlib.pyplot as plt

from PIL import Image

import numpy as np

import os

import cv2

import keras

from keras.utils import np utils

from keras.models import Sequential

from keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout

from random import shuffle

from tgdm import tgdm

import scipy

import skimage

from skimage.transform import resize
import random

Using TensorFlow backend.

data=1[]

labels=1[]

Parasitized=os.listdir("../input/cell images/cell images/Parasitized/")

for a in Parasitized:

try:

image=cv2.imread("../input/cell images/cell images/Parasitized/"+a)
image from array = Image.fromarray(image, 'RGB')
size image = image from array.resize((50, 50))

data.append(np.array(size image))
labels.append (0)
except AttributeError:

print (u ")
Uninfected=os.listdir("../input/cell images/cell images/Uninfected/")
for b in Uninfected:
try:
image=cv2.imread("../input/cell images/cell images/Uninfected/"+Db)
image from array = Image.fromarray(image, 'RGB'")
size image = image from array.resize((50, 50))

data.append(np.array(size image))
labels.append (1)

except AttributeError:
print ("")

Cells=np.array(data)
labels=np.array(labels)
np.save ("Cells",Cells)
np.save ("labels", labels)
Cells=np.load("Cells.npy")
labels=np.load("labels.npy")
s=np.arange (Cells.shape[0])

np.random.shuffle (s)

Cells=Cells|[s]

labels=labels|[s]

num classes=len (np.unique (labels))

len data=len(Cells)

(x_train,x test)=Cells[(int) (0.1*len data):],Cells[: (int) (0.1*len data)]

X _train = x_train.astype('float32')/255 # As we are working on image data we
are normalizing data by divinding 255.

x test = x test.astype('float32')/255

train len=len(x_train)

test len=len(x_test)

(y_train,y test)=labels[(int) (0.1*len data):],labels[: (int) (0.1*len data)]
#Doing One hot encoding as classifier has multiple classes
y_train=keras.utils.to categorical (y train,num classes)
y_test=keras.utils.to categorical(y test,num classes)

Different Regularization Techniques in Deep
Learning

Now that we have an understanding of how regularization helps in reducing overfitting, we’ll
learn a few different techniques in order to apply regularization in deep learning.

L2 & L1 regularization

L1 and L2 are the most common types of regularization. These update the general cost function
by adding another term known as the regularization term.

Cost function = Loss (say, binary cross entropy) + Regularization term

Due to the addition of this regularization term, the values of weight matrices decrease because it
assumes that a neural network with smaller weight matrices leads to simpler models. Therefore,
it will also reduce overfitting to quite an extent.

However, this regularization term differs in L1 and L2.

¥ l‘_‘ 2,
 Cost function = Loss + 5. * ¥ |w||
In L2, we have:

Here, lambda is the regularization parameter. It is the hyperparameter whose value is optimized
for better results. L2 regularization is also known as weight decay as it forces the weights to
decay towards zero (but not exactly zero).

In L1, we have;

Cost function = Loss + 5= * 3 ||w||

In this, we penalize the absolute value of the weights. Unlike L2, the weights may be reduced to
zero here. Hence, it is very useful when we are trying to compress our model. Otherwise, we
usually prefer L2 over it.

In keras, we can directly apply regularization to any layer using the regularizers. Below | have
applied regularizer on dense layer having 500 neurons and relu activation function.

#creating sequential model

model=Sequential ()

model.add (Conv2D (filters=16, kernel size=2,padding="same",activation="relu",in
put shape=(50,50,3)))

model.add (MaxPooling2D (pool size=2))

model.add (Conv2D (filters=32, kernel size=2,padding="same",activation="relu"))
model.add (MaxPooling2D (pool size=2))

model.add (Conv2D (filters=64, kernel size=2,padding="same",activation="relu"))
model.add (MaxPooling2D (pool size=2))

model.add (Flatten())

#12 regularizer

model.add (Dense (500, kernel regularizer=regularizers.12(0.01),activation="relu
"))

model.add (Dense (2, activation="softmax"))#2 represent output layer neurons

Note: Here the value 0.01 is the value of regularization parameter, i.e., lambda, which we
need to optimize further. We can optimize it using the grid-search method.

Similarly, we can also apply L1 regularization.

Dropout

This is the one of the most interesting types of regularization techniques. It also produces very
good results and is consequently the most frequently used regularization technique in the field of
deep learning.

To understand dropout, let’s say our neural network structure is akin to the one shown below:

O—
AN,
0k

}\\3 A }\\\' A

\\6 5";.\\6 R

" ‘\"‘)' "‘ " ‘\(‘)' "‘ »
Slg gug

e

' ¢ » ‘\ \"‘0" ‘y‘ :')
(O (OO
/4:{ I&.?::OX&V
l[' X II,“\\

So what does dropout do? At every iteration, it randomly selects some nodes and removes them
along with all of their incoming and outgoing connections as shown below.

So each iteration has a different set of nodes and this results in a different set of outputs. It can
also be thought of as an ensemble technique in machine learning.

Ensemble models usually perform better than a single model as they capture more randomness.
Similarly, dropout also performs better than a normal neural network model.

This probability of choosing how many nodes should be dropped is the hyperparameter of the

dropout function. As seen in the image above, dropout can be applied to both the hidden layers
as well as the input layers.

p=0.5

hidden fc layer dropout layer

ocutput layer
-.
| %
§ é :
—

“ .0
-
Due to these reasons, dropout is usually preferred when we have a large neural network structure

=
=
%%% i
in order to introduce more randomness.

input layer

G

\pAL/

@

@

@
Training time

In keras, we can implement dropout using the keras layer. Below is the Dropout
Implementation. | have introduced dropout of 0.2 as the probability of dropping in my neural
network architecture after last hidden layer having 64 kernels and after first dense layer having
500 neurons.

fcreating sequential model

model=Sequential ()

model.add (Conv2D (filters=16, kernel size=2,padding="same",activation="relu",in
put shape=(50,50,3)))

model.add (MaxPooling2D (pool size=2))

model.add (Conv2D (filters=32, kernel size=2,padding="same",activation="relu"))
model.add (MaxPooling2D (pool size=2))

model.add (Conv2D (filters=64, kernel size=2,padding="same",activation="relu"))
model.add (MaxPooling2D (pool size=2))

1lst dropout

model .add (Dropout (0.2))

model.add (Flatten())

model.add (Dense (500, activation="relu"))

2nd dropout

model .add (Dropout (0.2))

model.add (Dense (2,activation="softmax")) #2 represent output layer neurons

Data Augmentation

The simplest way to reduce overfitting is to increase the size of the training data. In machine
learning, we were not able to increase the size of training data as the labeled data was too costly.

But, now let’s consider we are dealing with images. In this case, there are a few ways of
increasing the size of the training data — rotating the image, flipping, scaling, shifting, etc. In the
below image, some transformation has been done on the handwritten digits dataset.

shift shift shear shift & scale rotate & scale

2 s)3] 7)o

This technique is known as data augmentation. This usually provides a big leap in improving
the accuracy of the model. It can be considered as a mandatory trick in order to improve our
predictions.

In keras, we can perform all of these transformations using ImageDataGenerator. It has a big
list of arguments which you you can use to pre-process your training data.

Below is the implementation code.

from keras.preprocessing.image import ImageDataGenerator

datagen = ImageDataGenerator (
featurewise center=False, # set input mean to 0 over the dataset
samplewise center=False, # set each sample mean to O
featurewise std normalization=False, # divide inputs by std of the

dataset
samplewise std normalization=False, # divide each input by its std
zca whitening=False, # apply ZCA whitening
rotation range=10, # randomly rotate images in the range (degrees, 0
to 180)

zoom _range = 0.1, # Randomly zoom image

width shift range=0.1, # randomly shift images horizontally
(fraction of total width)

height shift range=0.1, # randomly shift images vertically (fraction
of total height)

horizontal flip=False, # randomly flip images

vertical flip=False) # randomly flip images

datagen.fit (x_train)

Early stopping

Early stopping is a kind of cross-validation strategy where we keep one part of the training set as
the validation set. When we see that the performance on the validation set is getting worse, we
immediately stop the training on the model. This is known as early stopping.

'
Error |,
."._ TE".'-'.iI'I'g Eror X
5 Y __.--"'f
.1-\. .-"--f
'I'f.:nl:rq__Errn' "\\ I ._,.--"#
\\ \“_l_ -
., [
—
t -
Early ! Training steps
stopping In the above image, we will stop training at the

dotted line since after that our model will start overfitting on the training data.

In keras, we can apply early stopping using the callbacks function. Below is the implementation
code for it.l have applied early stopping so that it will stop immendiately if validation error will
not decreased after 3 epochs.

from keras.callbacks import EarlyStopping

earlystop= EarlyStopping(monitor='val acc', patience=3)
epochs = 20 #

batch size = 256

Here, monitor denotes the quantity that needs to be monitored and ‘val_err’ denotes the
validation error.

Patience denotes the number of epochs with no further improvement after which the training
will be stopped. For better understanding, let’s take a look at the above image again. After the
dotted line, each epoch will result in a higher value of validation error. Therefore, 5 epochs after
the dotted line (since our patience is equal to 3), our model will stop because no further
improvement is seen.

Note: It may be possible that after 3 epochs (this is the value defined for patience in
general), the model starts improving again and the validation error starts decreasing as
well. Therefore, we need to take extra care while tuning this hyperparameter.

Implementation on Malaria Cell
Identification with keras

By this point, you should have a theoretical understanding of the different techniques we have
gone through. We will now apply this knowledge to our deep learning practice problem —
Identify Malaria cell. In this problem | will use all the regularization techniques which | have
discussed earlier i.e.,

L1,L.2 Regularizer
Dropout

Data Augmentation
Early Stopping

el oA =

#creating sequential model

model=Sequential ()

model.add (Conv2D (filters=16, kernel size=2,padding="same",activation="relu", in
put shape=(50,50,3)))

model.add (MaxPooling2D (pool size=2))

model.add (Conv2D (filters=32, kernel size=2,padding="same",activation="relu"))
model.add (MaxPooling2D (pool size=2))

model.add (Conv2D (filters=64, kernel size=2,padding="same",activation="relu"))
model.add (MaxPooling2D (pool size=2))

1st dropout

model.add (Dropout (0.2))

model.add (Flatten())

#12 regularizer

model.add (Dense (500, kernel regularizer=regularizers.12(0.01),activation="relu
"))

2nd dropout

model.add (Dropout (0.2))

model.add (Dense (2,activation="softmax"))#2 represent output layer neurons
model.summary ()

Layer (type) Output Shape Param #
conv2d 7 (Conv2D) (None, 50, 50, 106) 208
max_ pooling2d 7 (MaxPooling2 (None, 25, 25, 16) 0
conv2d 8 (Conv2D) (None, 25, 25, 32) 2080
max pooling2d 8 (MaxPooling2 (None, 12, 12, 32) 0
convzd 9 (Conv2D) (None, 12, 12, 64) 8256
max pooling2d 9 (MaxPooling2 (None, 6, 6, 64) 0
dropout 3 (Dropout) (None, 6, 6, 64) 0

flatten 3 (Flatten) (None, 2304) 0

dense_ 5 (Dense) (None, 500) 1152500
dropout 4 (Dropout) (None, 500) 0
dense 6 (Dense) (None, 2) 1002

Total params:
Trainable params:

1,164,046
1,164,046

Non-trainable params: O

Compiling model
compile the model with loss as categorical crossentropy and using adam

optimizer you can test result by trying RMSProp as well as Momentum

model.compile (loss='categorical crossentropy', optimizer='adam',

metrics=["'accuracy'])

Fit the model

history = model.fit generator(datagen.flow(x train,y train,
batch size=batch size),

(x_test,y test),

// batch size

epochs

verbose

epochs, validation data

1, steps per epoch=x train.shape[0]

, callbacks=[earlystop])

Epoch 1/20
96/96 []
0.6534 - val loss: .5456 val acc: 0
Epoch 2/20
96/96 []
0.8349 - val loss: 0.4226 val acc: O
Epoch 3/20
96/96 []
0.9018 - val loss: 0.3744 val acc: 0
Epoch 4/20
96/96 []
0.9165 - val loss: 0.2909 val acc: 0
Epoch 5/20
96/96 []
0.9218 - val loss: 0.2328 val acc: O
Epoch 6/20
96/96 []
0.9309 - val loss: 0.2461 val acc: 0
Epoch 7/20
96/96 []
0.9344 - val loss: 0.2504 val acc: O
Epoch 8/20
96/96 []
0.9387 - val loss: 0.2672 val acc: 0

- 37s

L1572

- 35s

.8726

- 35s

.8940

- 35s

. 9136

- 35s

.9379

- 35s

.9310

- 35s

.9336

- 34s

.9314

I we achived 95.10% validation accuracy

Now plot confusion matrix

from sklearn.metrics import confusion matrix

pred = model.predict (x test)
pred = np.argmax(pred,axis

1)

384ms/step

365ms/step

365ms/step

362ms/step

367ms/step

368ms/step

364ms/step

359ms/step

- loss:

- loss:

- loss:

- loss:

- loss:

- loss:

- loss:

- loss:

.8363

.4570

.3233

.2808

.2674

.2563

.2495

.2444

acc:

acc:

acc:

acc:

acc:

acc:

acc:

acc:

y_true = np.argmax(y test,axis = 1)
CM = confusion matrix(y true, pred)
from mlxtend.plotting import plot confusion matrix

fig, ax = plot confusion matrix(conf mat=CM , figsize=(5, 5))
plt.show ()

true label

predicted label

Recall=1298/(1298+87)
Recall

0.9371841155234657
Precision = 1298/(1298+48)
Precision
0.9643387815750372

