
One of the most common problem data science professionals face is to avoid overfitting. Have

you come across a situation where your model performed exceptionally well on train data, but

was not able to predict test data. Or you were on the top of a competition in public leaderboard,

only to fall hundreds of places in the final rankings? Well – this is the kernel for you!.

Table of Contents

1. What is Regularization?

2. How does Regularization help in reducing Overfitting?

3. Different Regularization techniques in Deep Learning

o L2 and L1 regularization

o Dropout

o Data augmentation

o Early stopping

What is Regularization?

Before we deep dive into the topic, take a look at this image:

Have you seen this image before? As we move towards the right in this image, our model tries to

learn too well the details and the noise from the training data, which ultimately results in poor

performance on the unseen data.

In other words, while going towards the right, the complexity of the model increases such that

the training error reduces but the testing error doesn’t. This is shown in the image below.

If you’ve built a neural network before, you know how complex they are. This makes them more

prone to overfitting.

Regularization is a technique which makes slight modifications to the learning algorithm such

that the model generalizes better. This in turn improves the model’s performance on the unseen

data as well.

How does Regularization help reduce

Overfitting?

Let’s consider a neural network which is overfitting on the training data.

If you have studied the concept of regularization in machine learning, you will have a fair idea

that regularization penalizes the coefficients. In deep learning, it actually penalizes the

weight matrices of the nodes.

Assume that our regularization coefficient is so high that some of the weight matrices are nearly

equal to zero. This will result in a much simpler linear network and slight underfitting of the

training data.

Such a large value of the regularization coefficient is not that useful. We need to optimize the

value of regularization coefficient in order to obtain a well-fitted model as shown in the image

below.

#data preprocessing

import pandas as pd

#math operations

import numpy as np

#machine learning

from sklearn.preprocessing import StandardScaler

#hyperparameter optimization

from sklearn.model_selection import GridSearchCV

#support vector machine model

from keras import regularizers

import matplotlib.pyplot as plt

from PIL import Image

import numpy as np

import os

import cv2

import keras

from keras.utils import np_utils

from keras.models import Sequential

from keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout

from random import shuffle

from tqdm import tqdm

import scipy

import skimage

from skimage.transform import resize

import random

Using TensorFlow backend.

data=[]

labels=[]

Parasitized=os.listdir("../input/cell_images/cell_images/Parasitized/")

for a in Parasitized:

 try:

 image=cv2.imread("../input/cell_images/cell_images/Parasitized/"+a)

 image_from_array = Image.fromarray(image, 'RGB')

 size_image = image_from_array.resize((50, 50))

 data.append(np.array(size_image))

 labels.append(0)

 except AttributeError:

 print("")

Uninfected=os.listdir("../input/cell_images/cell_images/Uninfected/")

for b in Uninfected:

 try:

 image=cv2.imread("../input/cell_images/cell_images/Uninfected/"+b)

 image_from_array = Image.fromarray(image, 'RGB')

 size_image = image_from_array.resize((50, 50))

 data.append(np.array(size_image))

 labels.append(1)

 except AttributeError:

 print("")

Cells=np.array(data)

labels=np.array(labels)

np.save("Cells",Cells)

np.save("labels",labels)

Cells=np.load("Cells.npy")

labels=np.load("labels.npy")

s=np.arange(Cells.shape[0])

np.random.shuffle(s)

Cells=Cells[s]

labels=labels[s]

num_classes=len(np.unique(labels))

len_data=len(Cells)

(x_train,x_test)=Cells[(int)(0.1*len_data):],Cells[:(int)(0.1*len_data)]

x_train = x_train.astype('float32')/255 # As we are working on image data we

are normalizing data by divinding 255.

x_test = x_test.astype('float32')/255

train_len=len(x_train)

test_len=len(x_test)

(y_train,y_test)=labels[(int)(0.1*len_data):],labels[:(int)(0.1*len_data)]

#Doing One hot encoding as classifier has multiple classes

y_train=keras.utils.to_categorical(y_train,num_classes)

y_test=keras.utils.to_categorical(y_test,num_classes)

Different Regularization Techniques in Deep

Learning

Now that we have an understanding of how regularization helps in reducing overfitting, we’ll

learn a few different techniques in order to apply regularization in deep learning.

L2 & L1 regularization

L1 and L2 are the most common types of regularization. These update the general cost function

by adding another term known as the regularization term.

Cost function = Loss (say, binary cross entropy) + Regularization term

Due to the addition of this regularization term, the values of weight matrices decrease because it

assumes that a neural network with smaller weight matrices leads to simpler models. Therefore,

it will also reduce overfitting to quite an extent.

However, this regularization term differs in L1 and L2.

In L2, we have:

Here, lambda is the regularization parameter. It is the hyperparameter whose value is optimized

for better results. L2 regularization is also known as weight decay as it forces the weights to

decay towards zero (but not exactly zero).

In L1, we have:

In this, we penalize the absolute value of the weights. Unlike L2, the weights may be reduced to

zero here. Hence, it is very useful when we are trying to compress our model. Otherwise, we

usually prefer L2 over it.

In keras, we can directly apply regularization to any layer using the regularizers. Below I have

applied regularizer on dense layer having 500 neurons and relu activation function.

#creating sequential model

model=Sequential()

model.add(Conv2D(filters=16,kernel_size=2,padding="same",activation="relu",in

put_shape=(50,50,3)))

model.add(MaxPooling2D(pool_size=2))

model.add(Conv2D(filters=32,kernel_size=2,padding="same",activation="relu"))

model.add(MaxPooling2D(pool_size=2))

model.add(Conv2D(filters=64,kernel_size=2,padding="same",activation="relu"))

model.add(MaxPooling2D(pool_size=2))

model.add(Flatten())

#l2 regularizer

model.add(Dense(500,kernel_regularizer=regularizers.l2(0.01),activation="relu

"))

model.add(Dense(2,activation="softmax"))#2 represent output layer neurons

Note: Here the value 0.01 is the value of regularization parameter, i.e., lambda, which we

need to optimize further. We can optimize it using the grid-search method.

Similarly, we can also apply L1 regularization.

Dropout

This is the one of the most interesting types of regularization techniques. It also produces very

good results and is consequently the most frequently used regularization technique in the field of

deep learning.

To understand dropout, let’s say our neural network structure is akin to the one shown below:

So what does dropout do? At every iteration, it randomly selects some nodes and removes them

along with all of their incoming and outgoing connections as shown below.

So each iteration has a different set of nodes and this results in a different set of outputs. It can

also be thought of as an ensemble technique in machine learning.

Ensemble models usually perform better than a single model as they capture more randomness.

Similarly, dropout also performs better than a normal neural network model.

This probability of choosing how many nodes should be dropped is the hyperparameter of the

dropout function. As seen in the image above, dropout can be applied to both the hidden layers

as well as the input layers.

Due to these reasons, dropout is usually preferred when we have a large neural network structure

in order to introduce more randomness.

In keras, we can implement dropout using the keras layer. Below is the Dropout

Implementation. I have introduced dropout of 0.2 as the probability of dropping in my neural

network architecture after last hidden layer having 64 kernels and after first dense layer having

500 neurons.

#creating sequential model

model=Sequential()

model.add(Conv2D(filters=16,kernel_size=2,padding="same",activation="relu",in

put_shape=(50,50,3)))

model.add(MaxPooling2D(pool_size=2))

model.add(Conv2D(filters=32,kernel_size=2,padding="same",activation="relu"))

model.add(MaxPooling2D(pool_size=2))

model.add(Conv2D(filters=64,kernel_size=2,padding="same",activation="relu"))

model.add(MaxPooling2D(pool_size=2))

1st dropout

model.add(Dropout(0.2))

model.add(Flatten())

model.add(Dense(500,activation="relu"))

2nd dropout

model.add(Dropout(0.2))

model.add(Dense(2,activation="softmax"))#2 represent output layer neurons

Data Augmentation

The simplest way to reduce overfitting is to increase the size of the training data. In machine

learning, we were not able to increase the size of training data as the labeled data was too costly.

But, now let’s consider we are dealing with images. In this case, there are a few ways of

increasing the size of the training data – rotating the image, flipping, scaling, shifting, etc. In the

below image, some transformation has been done on the handwritten digits dataset.

This technique is known as data augmentation. This usually provides a big leap in improving

the accuracy of the model. It can be considered as a mandatory trick in order to improve our

predictions.

In keras, we can perform all of these transformations using ImageDataGenerator. It has a big

list of arguments which you you can use to pre-process your training data.

Below is the implementation code.

from keras.preprocessing.image import ImageDataGenerator

datagen = ImageDataGenerator(

 featurewise_center=False, # set input mean to 0 over the dataset

 samplewise_center=False, # set each sample mean to 0

 featurewise_std_normalization=False, # divide inputs by std of the

dataset

 samplewise_std_normalization=False, # divide each input by its std

 zca_whitening=False, # apply ZCA whitening

 rotation_range=10, # randomly rotate images in the range (degrees, 0

to 180)

 zoom_range = 0.1, # Randomly zoom image

 width_shift_range=0.1, # randomly shift images horizontally

(fraction of total width)

 height_shift_range=0.1, # randomly shift images vertically (fraction

of total height)

 horizontal_flip=False, # randomly flip images

 vertical_flip=False) # randomly flip images

datagen.fit(x_train)

Early stopping

Early stopping is a kind of cross-validation strategy where we keep one part of the training set as

the validation set. When we see that the performance on the validation set is getting worse, we

immediately stop the training on the model. This is known as early stopping.

In the above image, we will stop training at the

dotted line since after that our model will start overfitting on the training data.

In keras, we can apply early stopping using the callbacks function. Below is the implementation

code for it.I have applied early stopping so that it will stop immendiately if validation error will

not decreased after 3 epochs.

from keras.callbacks import EarlyStopping

earlystop= EarlyStopping(monitor='val_acc', patience=3)

epochs = 20 #

batch_size = 256

Here, monitor denotes the quantity that needs to be monitored and ‘val_err’ denotes the

validation error.

Patience denotes the number of epochs with no further improvement after which the training

will be stopped. For better understanding, let’s take a look at the above image again. After the

dotted line, each epoch will result in a higher value of validation error. Therefore, 5 epochs after

the dotted line (since our patience is equal to 3), our model will stop because no further

improvement is seen.

Note: It may be possible that after 3 epochs (this is the value defined for patience in

general), the model starts improving again and the validation error starts decreasing as

well. Therefore, we need to take extra care while tuning this hyperparameter.

Implementation on Malaria Cell

Identification with keras

By this point, you should have a theoretical understanding of the different techniques we have

gone through. We will now apply this knowledge to our deep learning practice problem –

Identify Malaria cell. In this problem I will use all the regularization techniques which I have

discussed earlier i.e.,

1. L1,L2 Regularizer

2. Dropout

3. Data Augmentation

4. Early Stopping

#creating sequential model

model=Sequential()

model.add(Conv2D(filters=16,kernel_size=2,padding="same",activation="relu",in

put_shape=(50,50,3)))

model.add(MaxPooling2D(pool_size=2))

model.add(Conv2D(filters=32,kernel_size=2,padding="same",activation="relu"))

model.add(MaxPooling2D(pool_size=2))

model.add(Conv2D(filters=64,kernel_size=2,padding="same",activation="relu"))

model.add(MaxPooling2D(pool_size=2))

1st dropout

model.add(Dropout(0.2))

model.add(Flatten())

#l2 regularizer

model.add(Dense(500,kernel_regularizer=regularizers.l2(0.01),activation="relu

"))

2nd dropout

model.add(Dropout(0.2))

model.add(Dense(2,activation="softmax"))#2 represent output layer neurons

model.summary()

Layer (type) Output Shape Param #

===

conv2d_7 (Conv2D) (None, 50, 50, 16) 208

max_pooling2d_7 (MaxPooling2 (None, 25, 25, 16) 0

conv2d_8 (Conv2D) (None, 25, 25, 32) 2080

max_pooling2d_8 (MaxPooling2 (None, 12, 12, 32) 0

conv2d_9 (Conv2D) (None, 12, 12, 64) 8256

max_pooling2d_9 (MaxPooling2 (None, 6, 6, 64) 0

dropout_3 (Dropout) (None, 6, 6, 64) 0

flatten_3 (Flatten) (None, 2304) 0

dense_5 (Dense) (None, 500) 1152500

dropout_4 (Dropout) (None, 500) 0

dense_6 (Dense) (None, 2) 1002

===

Total params: 1,164,046

Trainable params: 1,164,046

Non-trainable params: 0

Compiling model

compile the model with loss as categorical_crossentropy and using adam

optimizer you can test result by trying RMSProp as well as Momentum

model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

Fit the model

history = model.fit_generator(datagen.flow(x_train,y_train,

batch_size=batch_size),

 epochs = epochs, validation_data =

(x_test,y_test),

 verbose = 1, steps_per_epoch=x_train.shape[0]

// batch_size

 , callbacks=[earlystop])

Epoch 1/20

96/96 [==============================] - 37s 384ms/step - loss: 1.8363 - acc:

0.6534 - val_loss: 0.5456 - val_acc: 0.7572

Epoch 2/20

96/96 [==============================] - 35s 365ms/step - loss: 0.4570 - acc:

0.8349 - val_loss: 0.4226 - val_acc: 0.8726

Epoch 3/20

96/96 [==============================] - 35s 365ms/step - loss: 0.3233 - acc:

0.9018 - val_loss: 0.3744 - val_acc: 0.8940

Epoch 4/20

96/96 [==============================] - 35s 362ms/step - loss: 0.2808 - acc:

0.9165 - val_loss: 0.2909 - val_acc: 0.9136

Epoch 5/20

96/96 [==============================] - 35s 367ms/step - loss: 0.2674 - acc:

0.9218 - val_loss: 0.2328 - val_acc: 0.9379

Epoch 6/20

96/96 [==============================] - 35s 368ms/step - loss: 0.2563 - acc:

0.9309 - val_loss: 0.2461 - val_acc: 0.9310

Epoch 7/20

96/96 [==============================] - 35s 364ms/step - loss: 0.2495 - acc:

0.9344 - val_loss: 0.2504 - val_acc: 0.9336

Epoch 8/20

96/96 [==============================] - 34s 359ms/step - loss: 0.2444 - acc:

0.9387 - val_loss: 0.2672 - val_acc: 0.9314

!!! we achived 95.10% validation accuracy

Now plot confusion matrix

from sklearn.metrics import confusion_matrix

pred = model.predict(x_test)

pred = np.argmax(pred,axis = 1)

y_true = np.argmax(y_test,axis = 1)

CM = confusion_matrix(y_true, pred)

from mlxtend.plotting import plot_confusion_matrix

fig, ax = plot_confusion_matrix(conf_mat=CM , figsize=(5, 5))

plt.show()

Recall=1298/(1298+87)

Recall

0.9371841155234657

Precision = 1298/(1298+48)

Precision

0.9643387815750372

