DL-WEEK-3

Use scikit-learn/keras/tensorflow:

1. Implement and demonstrate Multi-Layer Perceptron (MLP) model as
a classifier with back propagation on synthetic dataset.

2. You may prefer to create your own dataset (synthetic) using
make classification() fn., MLPClassifier()from scikit-learn
library

3. Evaluate the performance of the classifier by tabulating
metrics: Accuracy, precision, Recall, Fl-score, Specificity,
ROC curves, Confusion matrix, etc.,. Particularly check for
under-fitting, over-fitting, and generalizability.

4. Improve the performance of the classifier with different
techniques: check the training, validation errors. Apply
different resampling techniques (k-fold cross validation,
stratified sampling, LOOCV etc.,),change the hyperparameters,
etc.,

5. Perform the above steps 3,4 on any standard dataset of your
choice, and document all your observations carefully

*kkkkkkkkkhkkhkkkkkkhkhkhhhkhhkhhkhhhhhkhhhhhkhhhhhkkhhkhhhhhkhhhhhhhkkhhhhkhhhhhkhhkkhhhkhkhhhkhhhhkkkkhkhhkhkikx

Ex: code snippet for generating synthetic dataset

from sklearn.datasets import make classification, make blobs

1. make classification: Complex dataset with noisy features
X class, y class = make classification(
n_samples=100, n_ features=2, n informative=2,
n_redundant=0, n clusters per class=1,
class_sep=1.0, random state=42

)

2. make_blobs: Isotropic Gaussian blobs for clustering
X blobs, y blobs = make blobs(

n_samples=100, centers=3, n features=2,

cluster std=1.0, random state=42

)
Note:

There are two ways to generate synthetic data: make classification(),
make Dblobs ()
» make classification is for testing classifiers; make blobs is for
testing clustering algorithms like K-Means.
> make classification allows defining n_informative, n_redundant, and
n_repeated features. make blobs simply generates data around centers.
» make classification can produce non-convex, overlapping, and complex

boundaries, whereas make blobs produces spherical (isotropic) clusters
*kkkkkkkkkkkkkhkkkkkhkkkkkhkkhhkkkhhkkkhkkhkhhkkkhkhkhhkkkhkkhkhkkhkhkhhkhkkhkkhkhkkhkhhhkhkkhkhhhkhkhkhkhhkhkkkhhkkkhkkhkhhkkkkhhhkkhkkhhkkkhkhhkkkkkhkkkhkkkx

