WEEK - 2

List of Exercises:
1. Implement and demonstrate Multi-Layer Perceptron (MLP) model with back
propagation to solve the XOR Boolean function.
2. Implementation of MLP for the XOR problem in Keras
3. MLP model using Keras with Iris dataset. Validating the model on the
test data and then plotting the learning curve.
4. MLP model using Keras with Iris dataset. Validating the model on the
test data and then plotting the accuracy and loss.
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EXERCISE - 1
XOR Boolean function
Python Program with Explanation:
1. Import numpy, array-processing package to work with the arrays.
import numpy as np

2. Define a function abs () that returns the absolute value of x.
def abs(x):
return x if x>0 else -x

3. Define sigmoid(x) to implement a logistic sigmoid activation function.
def sigmoid (x):
return 1/(1 + np.exp(-x))

4. Define sigmoid derivative(x) used in computing error in back propagation
phase.
def sigmoid derivative (x):
return x * (1 - x)

5. Define the error function/cost function which checks if there is error
between the expected
output and predicted output and returns a Boolean value.
def checkError (predicted output) :
expected output = [[0],[1],[1],[0]]
for i,j in zip(expected output , predicted output):
if abs(i[0]1-3[0]1) > 0.001:
return True
return False

6. Set input data and desired output of an XOR Boolean function.
#Input datasets
inputs = np.array([[0,0],([0,1],[1,0],[1,111)
expected output = np.array([[0],[1],([1],[0]])

7. Initialialize epoch to 0 and learning rate to 0.1.
epoch = 0
lr = 0.1

8. Define the MLP network which consists of 2 neurons in Input layer, 2
neurons in Hidden
layer and 1 neuron in the Output layer. Accept the number of neurons in
each layer.
# inputLayerNeurons = 2

# hiddenLayerNeurons = 2

# outputLayerNeurons = 1

inputlLayerNeurons = int (input ("enter no of inputlLayer"))
hiddenlLayerNeurons = int (input ("enter no of hiddenlayer "))
outputLayerNeurons = int (input ("enter no of outputlayer "))



9. Define a list called hidden weights to store the weights of the hidden
layer neurons in the
network.
hidden weights = []

10. Receive the weights of the link from the input layer neurons to hidden
layer neurons.
for i in range(l,inputLayerNeurons+l) :
hidden weights ind = []
for j in
range (inputLayerNeurons+1, inputlLayerNeurons+hiddenLayerNeurons+1) :

hidden weights ind.append(float (input ('w'+str(i)+str(j))))
hidden weights.append(hidden weights ind)
11. Define list called output weights to store the weights of the output
layer neurons in the network.

output weights = []

12. Receive the weights of the link from the Hidden layer neurons to Output
layer neurons.

for i in
range (inputLayerNeurons+l, inputLayerNeurons+hiddenLayerNeurons+1l) :
output weights ind = []
for j in
range (inputLayerNeurons+hiddenLayerNeurons+1, inputLayerNeurons+hiddenLayerN
euronst+outputLayerNeurons+1) :

output weights ind.append(float (input ('w'+str(i)+str(j))))
output weights.append (output weights ind)

13. Define lists called hidden bias and output bias to store the bias of
the Hidden layer
neurons and Output layer neurons in the network.
hidden bias = []
output bias = []

14. Receive the Hidden layer biases and Output layer biases.
for i in
range (inputLayerNeurons+1l, inputLayerNeurons+hiddenLayerNeurons+outputLayerN
eurons+l) :
if i > inputlayerNeuronsthiddenLayerNeurons:
output bias.append(float (input ("o"+str(i))))
else:
hidden bias.append(float (input ("o"+str (i))))

15. Convert the weight lists and bias lists to array.
hidden weights = np.asarray(hidden weights)

hidden bias = np.asarray([hidden bias])
output weights = np.asarray(output weights)
output bias = np.asarray([output bias])

16. Print the initial hidden weights, hidden biases, output weights and
output biases.

print ("Initial hidden weights: ",end='")

print (*hidden weights)

print ("Initial hidden biases: ",end='")

print (*hidden bias)

print ("Initial output weights: ",end='")
(

print (*output weights)



print ("Initial output biases: ",end='")
print (*output bias)

17. Initialize the predicted output.
predicted output = [[0],[0],[0],[0]]

18. Train MLP until the predicted output converges to the desired output.

while checkError (predicted output):
epoch += 1
Step 1: Forward Propagation.
Calculate Net Input and Output in the Hidden Layer and Output Layer.

hidden layer activation = np.dot (inputs,hidden weights)

hidden layer activation += hidden bias

hidden layer output = sigmoid(hidden layer activation)

output layer activation =
np.dot (hidden layer output, output weights)

output layer activation += output bias

predicted output = sigmoid(output layer activation)

Estimate error at the node in the Output Layer.
error = expected output - predicted output

Step 2: Backward Propagation
Calculate Error at each node in the Output layer and Hidden layer.

d predicted output = error *
sigmoid derivative (predicted output)
error_hidden layer = d predicted output.dot (output weights.T)
d hidden layer = error hidden layer *
sigmoid derivative (hidden layer output)

Update all Weights and Biases.

output weights += hidden layer output.T.dot(d predicted output) * 1r
output bias += np.sum(d predicted output,axis=0, keepdims=True) * 1lr
hidden weights += inputs.T.dot(d hidden layer) * 1r
hidden bias += np.sum(d hidden layer,axis=0, keepdims=True) * 1lr

19. Print the final learned weights and biases of the Hidden layer and
Output layer.

print ("Final hidden weights: ",end='")
print (*hidden weights)
print ("Final hidden bias: ",end='")
print (*hidden bias)
print ("Final output weights: ",end='")
print (*output weights)
print ("Final output bias: ",end='")

(

print (*output bias)

20. Print the final output obtained for the input data set (i.e., for the
XOR function)

print ("\nOutput from neural network: ",end='")

print (*predicted output)

21. Print the number of epochs executed to learn the weights and biases for
the model to get
the desired output.
print ("\nNo of epochs")



print (epoch)

Complete Program:
import numpy as np

def abs(x):
return x if x>0 else -x

def sigmoid (x):
return 1/(1 + np.exp(-x))

def sigmoid derivative (x):
return x * (1 - x)

def checkError (predicted output):
expected output = [[0],[1],[1], [0]]
for i,j in zip(expected output , predicted output):
if abs(i[0]1-3[0]1) > 0.001:
return True
return False

#Input datasets
inputs = np.array([[0,0],[0,1],[1,0],[1,1]1])
expected output = np.array([[0],[1],[1],([0]])

epoch = 0
lr = 0.1

# inputLayerNeurons = 2
# hiddenLayerNeurons = 2
# outputLayerNeurons = 1
inputLayerNeurons = int (input ("enter no of inputLayer"))
int (input ("enter no of hiddenlayer "))
t(

input ("enter no of outputlayer "))

hiddenLayerNeurons = in
outputLayerNeurons = in

hidden weights = []
for i in range(l,inputLayerNeurons+1l) :
hidden weights ind = []
for 3 in
range (inputLayerNeurons+1l, inputLayerNeurons+hiddenLayerNeurons+1) :
hidden weights ind.append(float (input ('w'+str(i)+str(3j))))
hidden weights.append(hidden weights ind)

output weights = []
for i in range(inputlLayerNeurons+1l, inputLayerNeurons+thiddenLayerNeurons+1l) :
output weights ind = []
for j in
range (inputLayerNeurons+hiddenLayerNeurons+1l, inputLayerNeurons+hiddenLayerN
eurons+outputLayerNeurons+1) :
output weights ind.append(float (input ('w'+str(i)+str(j))))
output weights.append (output weights ind)

hidden bias []
output bias = []
for 1 in
range (inputLayerNeurons+1, inputLayerNeurons+hiddenLayerNeurons+outputLayerN
eurons+1) :
if i > inputlayerNeuronsthiddenLayerNeurons:
output bias.append(float (input ("o"+str(i))))



else:

hidden bias.append(float (input ("o"+str(i))))

hidden weights = np.asarray(hidden weights)
hidden bias = np.asarray([hidden bias])
output weights = np.asarray(output weights)
output bias = np.asarray([output bias])

print ("Initial hidden weights: ",end="'")
print (*hidden weights)

print ("Initial hidden biases: ",end='")
print (*hidden bias)

print ("Initial output weights: ",end='")
print (*output weights)

print ("Initial output biases: ",end='")
print (*output bias)

predicted output = [[0],[0], [0], [0]]
#Training algorithm
while checkError (predicted output):

epoch +=1
#Forward Propagation

hidden layer activation = np.dot (inputs,hidden weights)

hidden layer activation += hidden bias

hidden layer output = sigmoid(hidden layer activation)

output layer activation = np.dot (hidden layer output,output weights)

output layer activation += output bias

predicted output = sigmoid(output layer activation)

#Backpropagation

error = expected output - predicted output

d predicted output = error * sigmoid derivative (predicted output)

error_hidden layer = d predicted output.dot (output weights.T)
error_hidden layer

d hidden layer =
sigmoid derivative (hidden layer output)

#Updating Weights and Biases

output weights += hidden layer output.T.dot(d predicted output)
output bias += np.sum(d predicted output,axis=0, keepdims=True)

hidden weights += inputs.T.dot (d hidden layer)
hidden bias += np.sum(d hidden layer,axis=0, keepdims=True)

print
print
print
print
print

"Final hidden weights: ",end='")
*hidden weights)

"Final hidden bias: ",end='")
*hidden bias)

"Final output weights: ",end='")

* 1r

print
print
print

print
print
print
print
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*output weights)
"Final output bias: ",end='")
*output bias)

"\nOutput from neural network: ",end='")
*predicted output)

"\nNo

epoch)

of epochs")

*

1r

* 1r
* 1r



Output:

= RESTART: multilayer perceptron xor.py
enter no of inputlayer2

enter no of hiddenlayer 2

enter no of outputlayer 1

w133

wld6

w234

w245

w352

w454

031

04-6

05-3.93

Initial hidden weights: [3. 6.] [4. 5.]
Initial hidden biases: [ 1. -6.]
Initial output weights: [2.] [4.]
Initial output biases: [-3.93]

Final hidden weights: [ 6.12370882 10.03281141] [ 6.12342151 10.0272853 ]

Final hidden bias: [-9.34571401 -4.50662615]
Final output weights: [-15.62277004] [14.81103743]
Final output bias: [-7.06705554]

Output from neural network: [0.001] [0.99916398] [0.99916411] [0.00085368]

No of epochs
14905082
>>>

Screenshot of the Output:

nile checkError (predicted output):
epoch 4= 1

#Forward Propagation

hidden layer_activation = np.dot (inputs,hidden_weights)
[ hidden_layer_activation += hidden bias

hidden_layer output = sigmoid(hidden layer_activation)

output_layer_activation = np.dot (hidden_layer output,output_weights)
output_layer_activation += output_bias
predicted output = sigmoid(output_layer activation)

#Backpropagation
error = expected output - predicted output
d_predicted output = error * sigmoid derivative (predicted output)

enter no of inputlayer2
enter no of hiddenlayer 2
enter no of outputlayer 1

: "end='") Final hidden bias:

*output_weights)
"F: as: ",end='") Final output bias: [-7.06705554]

Ne of epechs
14905082

print (epoch)

Final output weights: [-15.62277004]

Cutput from neural network: [0.001]

w133
error_nidden laver = d _predicted output.dot (CUTPUT_weights.T) WidE
d_nidden layer = error_hidden layer * sigmoid derivative (hidden laver_ou| >34
w245
#Updating Weights and Biases w352
output_weights += hidden layer output.T.dot (d_predicted output) * 1r wand
output_bias += np.sum(d_predicted output,axis=0,kespdims=Trus) * Ir 531
hidden weights += inputs.T.dot(d hidden layer) * 1r 46
nidden bias += np.sum(d_hidden laver,axis=0,kespdims=Trus) * 1r 55-3.93
Initial hidden weights: [3. 6.] [4.
i "yend="") Initial hidden biases: [ 1. -6.]
Initial output weights: [2.] [4.]
"rend=") Initial cutput biases: [-3.93]
Final hidden weights: 12370882 10.03281141]1 [ §.12342151 10.0272853 ]

[14.811037431

[0.99916411] [0.00085368]
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EXERCISE - 2

MLP for the XOR problem in Keras

import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

# 1. Define the XOR inputs and expected outputs
X

= np.array([[O, O], [O, 1], [1, O], [1, 1]], "float32")

# Inputs



y = np.array([[0], [11, [11, [0]1]1, "float32") # Expected outputs

# 2. Design the neural network model

model = Sequential ()

# Add a hidden layer with 4 neurons and 'tanh' activation function (or
'relu')

model.add (Dense (4, input dim=2, activation='tanh'))

# Add the output layer with 1 neuron and 'sigmoid' activation for binary
classification

model .add (Dense (1, activation='sigmoid'"))

# 3. Compile the model

# Use binary cross-entropy loss for binary classification and the 'adam'
optimizer

model.compile (loss='binary crossentropy', optimizer='adam',
metrics=['accuracy'])

# 4. Train the model

# Train for a sufficient number of epochs (e.g., 1000 or more)
model.fit (X, y, epochs=1000, verbose=0) # verbose=0 suppresses training
output

# 5. Evaluate the model
_, accuracy = model.evaluate(X, y, verbose=0)
print (f'Accuracy: {accuracy * 100:.2f}%\n")

# 6. Make predictions
predictions = model.predict (X)
print ("Predictions:")
for i in range(len(X)):
# Round predictions to 0 or 1 for clarity
print (f"Input: {X[i]} | Predicted Output: {predictions[i][0]:.4f} |
Rounded: {round(predictions[i][0])} | Expected: {y[i]I[O0]1}")
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EXERCISE - 3
MLP model using Keras with Iris dataset. Validating the model on the test
data and then plotting the learning curve.

Program Code:

from pandas import read csv

from sklearn.model selection import train test split
from sklearn.preprocessing import LabelEncoder

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.optimizers import SGD

from matplotlib import pyplot

# Read the dataset ‘Iris.csv’

df = read csv('Iris.csv')
# Split the Iris features into input and output columns
X = df.values[:, :-1]

= df.values[:, -1]

~
I

# Check all data are floating point values
X = X.astype('float32")

# Encode the strings of labels to integer values



y = LabelEncoder().fit transform(y)

# Split the data matrix into train and test dataset and Print the shape of
train dataset and test dataset.

X train, X test, y train, y test = train test split(X, y, test size=0.2,
shuffle = True, random state = 123)

print ("X train shape: {}".format (X train.shape))

print ("X test shape: {}".format (X test.shape))

print ("y train shape: {}".format(y train.shape))

print ("y test shape: {}".format (y test.shape))

# split randomly the data matrix into training dataset and validation
dataset

X train, X val, y train, y val = train test split (X train, y train,

test size=0.2, random state=1)

# Determine the number of input features
n features = X train.shape[1l]

# Define the model

model = Sequential ()

model.add (Dense (10, activation='relu', kernel initializer='he normal',
input shape=(n_features,)))

model.add (Dense (8, activation='relu', kernel initializer='he normal'))
model.add (Dense (3, activation='softmax'))

# Compile the model

sgd = SGD(learning rate=0.001, momentum=0.38)

model.compile (optimizer="adam', loss='sparse categorical crossentropy',
metrics=["'accuracy'])

# Fit the model
history = model.fit(X train, y train, epochs=150, batch size=32, verbose=0,
validation split=0.3)

# Evaluate the model and print the accuracy
loss, acc = model.evaluate (X test, y test, verbose=0)
print ('Test Accuracy: $%$.3f' $ acc)

# Visualize by plotting the learning curves
pyplot.title('Learning Curves')

pyplot.xlabel ('Epoch')

pyplot.ylabel ('Cross Entropy')

pyplot.plot (history.history['loss'], label='train')
pyplot.plot (history.history['val loss'], label='val')
pyplot.legend ()

pyplot.show ()

Output:

(100, 5) (50, 5) (100,) (50,)
Test Accuracy: 0.960
>>>

(100, S5) (30, S5) (100,) (50,)
Test Accuracy: 0.560
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EXERCISE - 4
MLP model using Keras with Iris dataset. Validating the model on the test
data and then plotting the accuracy and loss.

Program Code:

from pandas import read csv

from sklearn.model selection import train test split
from sklearn.preprocessing import LabelEncoder
import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense

from matplotlib import pyplot as plt

# Read the dataset ‘Iris.csv’

df = read csv('Iris.csv')

# Split the Iris features into input and output columns
X = df.values[:, :-1]

y = df.values[:, -1]

# Check all data are floating point values

X = X.astype('float32")

# Encode the strings of labels to integer values

y = LabelEncoder().fit transform(y)

# Split the data matrix into train and test dataset and Print the shape of

train dataset and test dataset.

X train, X test, y train, y test = train test split(X, y, test size=0.2,
shuffle = True, random state = 123)

print ("X train shape: {}".format (X train.shape))

print ("X test shape: {}".format (X test.shape))

print ("y train shape: {}".format(y train.shape))

print ("y test shape: {}".format (y test.shape))

# split randomly the data matrix into training dataset and validation
dataset

X train, X val, y train, y val = train test split (X train, y train,
test size=0.2, random state=1)

# Determine the number of input features
n features = X train.shape[1l]

# Define model

model = keras.Sequential ([
keras.layers.Flatten (input shape=(n_ features,)),
keras.layers.Dense (4, activation=tf.nn.relu),
keras.layers.Dense (4, activation=tf.nn.relu),



keras.layers.Dense(l, activation=tf.nn.sigmoid),
1)
# Compile the model
model.compile (optimizer='adam', loss='mse', metrics=['accuracy'])
# Fit the model
history = model.fit(X train, y train, epochs=34, batch size=32, verbose=0,
validation data=(X val, y val))

# Evaluate the model and print the accuracy
loss, acc = model.evaluate (X test, y test, verbose=0)
print ('Test Accuracy: %.3f' % acc)

# Visualize 'Training vs. Validation loss'

loss train = history.history['loss']

loss val = history.history['val loss']

epochs = range(1l, 35)

plt.plot (epochs, loss_train, 'g', label='Training loss')
plt.plot (epochs, loss val, 'b', label='validation loss')
plt.title('Training vs. Validation loss')

plt.xlabel ('Epochs')

plt.ylabel ('Loss')

plt.legend()

plt.show ()

# Visualize 'Training Accuracy vs. Validation accuracy'
loss _train = history.history['accuracy']

loss val = history.history['val accuracy']

epochs = range (1, 35)

plt.plot (epochs, loss train, 'g', label='Training accuracy')
plt.plot (epochs, loss val, 'b', label='validation accuracy')
plt.title('Training vs. Validation accuracy')

plt.xlabel ('Epochs')

plt.ylabel ('Accuracy')

plt.legend()

plt.show()

Output:

X_train shape: (120, §)
X_test shape: (30, 5)
y_train shape: (120,)
y_test shape: (30,)
Test Accuracy: 0.200

Training vs. Validation loss

—— Training loss

0.50
—— validation loss.

Epochs.



Training vs. Validation accuracy

o | ] 10 15 20 25 30 35
Epochs
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Programming Assignment:

Let us now look at an example of learning in a Multi -Layer Perceptron. The
given MLP consists of an Input layer, one Hidden layer and an Output layer.
Input layer has 3neurons, Hidden layer has 2 neurons and a single neuron in
the Output layer.

X1 X5 X3 Obpesired

1 1 0 1

Learning rate: =0.6
The weights and biases are tabulated in Table 17.1.

Table 17.1: Weights and Biases
X1 | X2 | X3 | Wig Wis | Wos Wos | Was Wss Was | Wse 64 65 06
1 1 0 0.2 10.3 |- 0.2 10.3 |- - 0.1 {0.1]0.3]|-0.3
0.1 0.4 0.3




