

WEEK - 2

List of Exercises:

1. Implement and demonstrate Multi-Layer Perceptron (MLP) model with back
propagation to solve the XOR Boolean function.

2. Implementation of MLP for the XOR problem in Keras

3. MLP model using Keras with Iris dataset. Validating the model on the
test data and then plotting the learning curve.

4. MLP model using Keras with Iris dataset. Validating the model on the
test data and then plotting the accuracy and loss.

EXERCISE - 1

XOR Boolean function

Python Program with Explanation:

1. Import numpy, array-processing package to work with the arrays.

import numpy as np

2. Define a function abs() that returns the absolute value of x.

def abs(x):

 return x if x>0 else –x

3. Define sigmoid(x) to implement a logistic sigmoid activation function.

def sigmoid (x):

 return 1/(1 + np.exp(-x))

4. Define sigmoid_derivative(x) used in computing error in back propagation

phase.

def sigmoid_derivative(x):

 return x * (1 - x)

5. Define the error function/cost function which checks if there is error

between the expected

 output and predicted output and returns a Boolean value.

def checkError(predicted_output):

 expected_output = [[0],[1],[1],[0]]

 for i,j in zip(expected_output , predicted_output):

 if abs(i[0]-j[0]) > 0.001:

 return True

 return False

6. Set input data and desired output of an XOR Boolean function.

#Input datasets

inputs = np.array([[0,0],[0,1],[1,0],[1,1]])

expected_output = np.array([[0],[1],[1],[0]])

7. Initialialize epoch to 0 and learning rate to 0.1.

epoch = 0

lr = 0.1

8. Define the MLP network which consists of 2 neurons in Input layer, 2

neurons in Hidden

 layer and 1 neuron in the Output layer. Accept the number of neurons in

each layer.

inputLayerNeurons = 2

hiddenLayerNeurons = 2

outputLayerNeurons = 1

inputLayerNeurons = int(input("enter no of inputLayer"))

hiddenLayerNeurons = int(input("enter no of hiddenlayer "))

outputLayerNeurons = int(input("enter no of outputlayer "))

9. Define a list called hidden_weights to store the weights of the hidden

layer neurons in the

 network.

hidden_weights = []

10. Receive the weights of the link from the input layer neurons to hidden

layer neurons.

for i in range(1,inputLayerNeurons+1):

 hidden_weights_ind = []

 for j in

range(inputLayerNeurons+1,inputLayerNeurons+hiddenLayerNeurons+1):

 hidden_weights_ind.append(float(input('w'+str(i)+str(j))))

 hidden_weights.append(hidden_weights_ind)

11. Define list called output_weights to store the weights of the output

layer neurons in the network.

output_weights = []

12. Receive the weights of the link from the Hidden layer neurons to Output

layer neurons.

for i in

range(inputLayerNeurons+1,inputLayerNeurons+hiddenLayerNeurons+1):

 output_weights_ind = []

 for j in

range(inputLayerNeurons+hiddenLayerNeurons+1,inputLayerNeurons+hiddenLayerN

eurons+outputLayerNeurons+1):

 output_weights_ind.append(float(input('w'+str(i)+str(j))))

 output_weights.append(output_weights_ind)

13. Define lists called hidden_bias and output_bias to store the bias of

the Hidden layer

 neurons and Output layer neurons in the network.

hidden_bias = []

output_bias = []

14. Receive the Hidden layer biases and Output layer biases.

for i in

range(inputLayerNeurons+1,inputLayerNeurons+hiddenLayerNeurons+outputLayerN

eurons+1):

 if i > inputLayerNeurons+hiddenLayerNeurons:

 output_bias.append(float(input("o"+str(i))))

 else:

 hidden_bias.append(float(input("o"+str(i))))

15. Convert the weight lists and bias lists to array.

hidden_weights = np.asarray(hidden_weights)

hidden_bias = np.asarray([hidden_bias])

output_weights = np.asarray(output_weights)

output_bias = np.asarray([output_bias])

16. Print the initial hidden weights, hidden biases, output weights and

output biases.

print("Initial hidden weights: ",end='')

print(*hidden_weights)

print("Initial hidden biases: ",end='')

print(*hidden_bias)

print("Initial output weights: ",end='')

print(*output_weights)

print("Initial output biases: ",end='')

print(*output_bias)

17. Initialize the predicted_output.

predicted_output = [[0],[0],[0],[0]]

18. Train MLP until the predicted output converges to the desired output.

while checkError(predicted_output):

 epoch += 1

Step 1: Forward Propagation.

Calculate Net Input and Output in the Hidden Layer and Output Layer.

 hidden_layer_activation = np.dot(inputs,hidden_weights)

 hidden_layer_activation += hidden_bias

 hidden_layer_output = sigmoid(hidden_layer_activation)

 output_layer_activation =

np.dot(hidden_layer_output,output_weights)

 output_layer_activation += output_bias

 predicted_output = sigmoid(output_layer_activation)

Estimate error at the node in the Output Layer.

 error = expected_output - predicted_output

Step 2: Backward Propagation

Calculate Error at each node in the Output layer and Hidden layer.

 d_predicted_output = error *

sigmoid_derivative(predicted_output)

 error_hidden_layer = d_predicted_output.dot(output_weights.T)

 d_hidden_layer = error_hidden_layer *

sigmoid_derivative(hidden_layer_output)

Update all Weights and Biases.

output_weights += hidden_layer_output.T.dot(d_predicted_output) * lr

output_bias += np.sum(d_predicted_output,axis=0,keepdims=True) * lr

 hidden_weights += inputs.T.dot(d_hidden_layer) * lr

 hidden_bias += np.sum(d_hidden_layer,axis=0,keepdims=True) * lr

19. Print the final learned weights and biases of the Hidden layer and

Output layer.

print("Final hidden weights: ",end='')

print(*hidden_weights)

print("Final hidden bias: ",end='')

print(*hidden_bias)

print("Final output weights: ",end='')

print(*output_weights)

print("Final output bias: ",end='')

print(*output_bias)

20. Print the final output obtained for the input data set (i.e., for the

XOR function)

print("\nOutput from neural network: ",end='')

print(*predicted_output)

21. Print the number of epochs executed to learn the weights and biases for

the model to get

 the desired output.

print("\nNo of epochs")

print(epoch)

Complete Program:

import numpy as np

def abs(x):

 return x if x>0 else -x

def sigmoid (x):

 return 1/(1 + np.exp(-x))

def sigmoid_derivative(x):

 return x * (1 - x)

def checkError(predicted_output):

 expected_output = [[0],[1],[1],[0]]

 for i,j in zip(expected_output , predicted_output):

 if abs(i[0]-j[0]) > 0.001:

 return True

 return False

#Input datasets

inputs = np.array([[0,0],[0,1],[1,0],[1,1]])

expected_output = np.array([[0],[1],[1],[0]])

epoch = 0

lr = 0.1

inputLayerNeurons = 2

hiddenLayerNeurons = 2

outputLayerNeurons = 1

inputLayerNeurons = int(input("enter no of inputLayer"))

hiddenLayerNeurons = int(input("enter no of hiddenlayer "))

outputLayerNeurons = int(input("enter no of outputlayer "))

hidden_weights = []

for i in range(1,inputLayerNeurons+1):

 hidden_weights_ind = []

 for j in

range(inputLayerNeurons+1,inputLayerNeurons+hiddenLayerNeurons+1):

 hidden_weights_ind.append(float(input('w'+str(i)+str(j))))

 hidden_weights.append(hidden_weights_ind)

output_weights = []

for i in range(inputLayerNeurons+1,inputLayerNeurons+hiddenLayerNeurons+1):

 output_weights_ind = []

 for j in

range(inputLayerNeurons+hiddenLayerNeurons+1,inputLayerNeurons+hiddenLayerN

eurons+outputLayerNeurons+1):

 output_weights_ind.append(float(input('w'+str(i)+str(j))))

 output_weights.append(output_weights_ind)

hidden_bias = []

output_bias = []

for i in

range(inputLayerNeurons+1,inputLayerNeurons+hiddenLayerNeurons+outputLayerN

eurons+1):

 if i > inputLayerNeurons+hiddenLayerNeurons:

 output_bias.append(float(input("o"+str(i))))

 else:

 hidden_bias.append(float(input("o"+str(i))))

hidden_weights = np.asarray(hidden_weights)

hidden_bias = np.asarray([hidden_bias])

output_weights = np.asarray(output_weights)

output_bias = np.asarray([output_bias])

print("Initial hidden weights: ",end='')

print(*hidden_weights)

print("Initial hidden biases: ",end='')

print(*hidden_bias)

print("Initial output weights: ",end='')

print(*output_weights)

print("Initial output biases: ",end='')

print(*output_bias)

predicted_output = [[0],[0],[0],[0]]

#Training algorithm

while checkError(predicted_output):

 epoch += 1

 #Forward Propagation

 hidden_layer_activation = np.dot(inputs,hidden_weights)

 hidden_layer_activation += hidden_bias

 hidden_layer_output = sigmoid(hidden_layer_activation)

 output_layer_activation = np.dot(hidden_layer_output,output_weights)

 output_layer_activation += output_bias

 predicted_output = sigmoid(output_layer_activation)

 #Backpropagation

 error = expected_output - predicted_output

 d_predicted_output = error * sigmoid_derivative(predicted_output)

 error_hidden_layer = d_predicted_output.dot(output_weights.T)

 d_hidden_layer = error_hidden_layer *

sigmoid_derivative(hidden_layer_output)

 #Updating Weights and Biases

 output_weights += hidden_layer_output.T.dot(d_predicted_output) * lr

 output_bias += np.sum(d_predicted_output,axis=0,keepdims=True) * lr

 hidden_weights += inputs.T.dot(d_hidden_layer) * lr

 hidden_bias += np.sum(d_hidden_layer,axis=0,keepdims=True) * lr

print("Final hidden weights: ",end='')

print(*hidden_weights)

print("Final hidden bias: ",end='')

print(*hidden_bias)

print("Final output weights: ",end='')

print(*output_weights)

print("Final output bias: ",end='')

print(*output_bias)

print("\nOutput from neural network: ",end='')

print(*predicted_output)

print("\nNo of epochs")

print(epoch)

Output:

= RESTART: multilayer_perceptron_xor.py

enter no of inputLayer2

enter no of hiddenlayer 2

enter no of outputlayer 1

w133

w146

w234

w245

w352

w454

o31

o4-6

o5-3.93

Initial hidden weights: [3. 6.] [4. 5.]

Initial hidden biases: [1. -6.]

Initial output weights: [2.] [4.]

Initial output biases: [-3.93]

Final hidden weights: [6.12370882 10.03281141] [6.12342151 10.0272853]

Final hidden bias: [-9.34571401 -4.50662615]

Final output weights: [-15.62277004] [14.81103743]

Final output bias: [-7.06705554]

Output from neural network: [0.001] [0.99916398] [0.99916411] [0.00085368]

No of epochs

14905082

>>>

Screenshot of the Output:

**

EXERCISE - 2
MLP for the XOR problem in Keras

import numpy as np

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

1. Define the XOR inputs and expected outputs

X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], "float32") # Inputs

y = np.array([[0], [1], [1], [0]], "float32") # Expected outputs

2. Design the neural network model

model = Sequential()

Add a hidden layer with 4 neurons and 'tanh' activation function (or

'relu')

model.add(Dense(4, input_dim=2, activation='tanh'))

Add the output layer with 1 neuron and 'sigmoid' activation for binary

classification

model.add(Dense(1, activation='sigmoid'))

3. Compile the model

Use binary cross-entropy loss for binary classification and the 'adam'

optimizer

model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy'])

4. Train the model

Train for a sufficient number of epochs (e.g., 1000 or more)

model.fit(X, y, epochs=1000, verbose=0) # verbose=0 suppresses training

output

5. Evaluate the model

_, accuracy = model.evaluate(X, y, verbose=0)

print(f'Accuracy: {accuracy * 100:.2f}%\n')

6. Make predictions

predictions = model.predict(X)

print("Predictions:")

for i in range(len(X)):

 # Round predictions to 0 or 1 for clarity

 print(f"Input: {X[i]} | Predicted Output: {predictions[i][0]:.4f} |

Rounded: {round(predictions[i][0])} | Expected: {y[i][0]}")

EXERCISE - 3

MLP model using Keras with Iris dataset. Validating the model on the test

data and then plotting the learning curve.

Program Code:

from pandas import read_csv

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.optimizers import SGD

from matplotlib import pyplot

Read the dataset ‘Iris.csv’

df = read_csv('Iris.csv')

Split the Iris features into input and output columns

X = df.values[:, :-1]

y = df.values[:, -1]

Check all data are floating point values

X = X.astype('float32')

Encode the strings of labels to integer values

y = LabelEncoder().fit_transform(y)

Split the data matrix into train and test dataset and Print the shape of

train dataset and test dataset.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

shuffle = True, random_state = 123)

print("X_train shape: {}".format(X_train.shape))

print("X_test shape: {}".format(X_test.shape))

print("y_train shape: {}".format(y_train.shape))

print("y_test shape: {}".format(y_test.shape))

split randomly the data matrix into training dataset and validation

dataset

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,

test_size=0.2, random_state=1)

Determine the number of input features

n_features = X_train.shape[1]

Define the model

model = Sequential()

model.add(Dense(10, activation='relu', kernel_initializer='he_normal',

input_shape=(n_features,)))

model.add(Dense(8, activation='relu', kernel_initializer='he_normal'))

model.add(Dense(3, activation='softmax'))

Compile the model

sgd = SGD(learning_rate=0.001, momentum=0.8)

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

Fit the model

history = model.fit(X_train, y_train, epochs=150, batch_size=32, verbose=0,

validation_split=0.3)

Evaluate the model and print the accuracy

loss, acc = model.evaluate(X_test, y_test, verbose=0)

print('Test Accuracy: %.3f' % acc)

Visualize by plotting the learning curves

pyplot.title('Learning Curves')

pyplot.xlabel('Epoch')

pyplot.ylabel('Cross Entropy')

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='val')

pyplot.legend()

pyplot.show()

Output:

(100, 5) (50, 5) (100,) (50,)

Test Accuracy: 0.960

>>>

EXERCISE - 4

MLP model using Keras with Iris dataset. Validating the model on the test

data and then plotting the accuracy and loss.

Program Code:

from pandas import read_csv

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense

from matplotlib import pyplot as plt

Read the dataset ‘Iris.csv’

df = read_csv('Iris.csv')

Split the Iris features into input and output columns

X = df.values[:, :-1]

y = df.values[:, -1]

Check all data are floating point values

X = X.astype('float32')

Encode the strings of labels to integer values

y = LabelEncoder().fit_transform(y)

Split the data matrix into train and test dataset and Print the shape of

train dataset and test dataset.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

shuffle = True, random_state = 123)

print("X_train shape: {}".format(X_train.shape))

print("X_test shape: {}".format(X_test.shape))

print("y_train shape: {}".format(y_train.shape))

print("y_test shape: {}".format(y_test.shape))

split randomly the data matrix into training dataset and validation

dataset

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,

test_size=0.2, random_state=1)

Determine the number of input features

n_features = X_train.shape[1]

Define model

model = keras.Sequential([

 keras.layers.Flatten(input_shape=(n_features,)),

 keras.layers.Dense(4, activation=tf.nn.relu),

 keras.layers.Dense(4, activation=tf.nn.relu),

 keras.layers.Dense(1, activation=tf.nn.sigmoid),

])

Compile the model

model.compile(optimizer='adam', loss='mse', metrics=['accuracy'])

Fit the model

history = model.fit(X_train, y_train, epochs=34, batch_size=32, verbose=0,

validation_data=(X_val, y_val))

Evaluate the model and print the accuracy

loss, acc = model.evaluate(X_test, y_test, verbose=0)

print('Test Accuracy: %.3f' % acc)

Visualize 'Training vs. Validation loss'

loss_train = history.history['loss']

loss_val = history.history['val_loss']

epochs = range(1,35)

plt.plot(epochs, loss_train, 'g', label='Training loss')

plt.plot(epochs, loss_val, 'b', label='validation loss')

plt.title('Training vs. Validation loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

Visualize 'Training Accuracy vs. Validation accuracy'

loss_train = history.history['accuracy']

loss_val = history.history['val_accuracy']

epochs = range(1,35)

plt.plot(epochs, loss_train, 'g', label='Training accuracy')

plt.plot(epochs, loss_val, 'b', label='validation accuracy')

plt.title('Training vs. Validation accuracy')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.legend()

plt.show()

Output:

Programming Assignment:

Let us now look at an example of learning in a Multi –Layer Perceptron. The

given MLP consists of an Input layer, one Hidden layer and an Output layer.

Input layer has 3neurons, Hidden layer has 2 neurons and a single neuron in

the Output layer.

X1 X2 X3 ODesired

1 1 0 1

Learning rate: =0.6

The weights and biases are tabulated in Table 17.1.

Table 17.1: Weights and Biases

X1 X2 X3 W14 W15 W24 W25 W34 W35 W46 W56 𝜃4 𝜃5 𝜃6
1 1 0 0.2 0.3 -

0.1

0.2 0.3 -

0.4

-

0.3

0.1 0.1 0.3 -0.3

