
   
  

WEEK - 2 

 
List of Exercises: 

1. Implement and demonstrate Multi-Layer Perceptron (MLP) model with back 
propagation to solve the XOR Boolean function. 

2. Implementation of MLP for the XOR problem in Keras 

3. MLP model using Keras with Iris dataset. Validating the model on the 
test data and then plotting the learning curve. 

4. MLP model using Keras with Iris dataset. Validating the model on the 
test data and then plotting the accuracy and loss. 

*************************************************************************** 
EXERCISE - 1 

XOR Boolean function 

Python Program with Explanation: 

1. Import numpy, array-processing package to work with the arrays. 

import numpy as np 

 

2.  Define a function abs() that returns the absolute value of x. 

def abs(x): 

 return x if x>0 else –x 

 

3. Define sigmoid(x) to implement a logistic sigmoid activation function. 

def sigmoid (x): 

    return 1/(1 + np.exp(-x)) 

 

4. Define sigmoid_derivative(x) used in computing error in back propagation 

phase. 

def sigmoid_derivative(x): 

    return x * (1 - x) 

 

5. Define the error function/cost function which checks if there is error 

between the expected  

    output and predicted output and returns a Boolean value. 

def checkError(predicted_output): 

 expected_output = [[0],[1],[1],[0]] 

 for i,j in  zip(expected_output , predicted_output): 

  if abs(i[0]-j[0]) > 0.001: 

   return True 

 return False 

 

6. Set input data and desired output of an XOR Boolean function.  

#Input datasets 

inputs = np.array([[0,0],[0,1],[1,0],[1,1]]) 

expected_output = np.array([[0],[1],[1],[0]]) 

 

7. Initialialize epoch to 0 and learning rate to 0.1. 

epoch = 0 

lr = 0.1 

 

8. Define the MLP network which consists of 2 neurons in Input layer, 2 

neurons in Hidden   

    layer and 1 neuron in the Output layer. Accept the number of neurons in 

each layer. 

# inputLayerNeurons = 2 

# hiddenLayerNeurons = 2 

# outputLayerNeurons = 1 

inputLayerNeurons = int(input("enter no of inputLayer")) 

hiddenLayerNeurons = int(input("enter no of hiddenlayer ")) 

outputLayerNeurons = int(input("enter no of outputlayer ")) 

 



   
  

9. Define a list called hidden_weights to store the weights of the hidden 

layer neurons in the   

   network. 

hidden_weights = [] 

 

10. Receive the weights of the link from the input layer neurons to hidden 

layer neurons. 

for i in range(1,inputLayerNeurons+1): 

 hidden_weights_ind = [] 

 for j in 

range(inputLayerNeurons+1,inputLayerNeurons+hiddenLayerNeurons+1): 

 

 hidden_weights_ind.append(float(input('w'+str(i)+str(j)))) 

 hidden_weights.append(hidden_weights_ind) 

11. Define list called output_weights to store the weights of the output 

layer neurons in the network. 

             

output_weights = [] 

 

12. Receive the weights of the link from the Hidden layer neurons to Output 

layer neurons. 

 

for i in 

range(inputLayerNeurons+1,inputLayerNeurons+hiddenLayerNeurons+1): 

 output_weights_ind = [] 

 for j in 

range(inputLayerNeurons+hiddenLayerNeurons+1,inputLayerNeurons+hiddenLayerN

eurons+outputLayerNeurons+1): 

 

 output_weights_ind.append(float(input('w'+str(i)+str(j)))) 

 output_weights.append(output_weights_ind) 

 

13. Define lists called hidden_bias and output_bias to store the bias of 

the Hidden layer  

    neurons and Output layer neurons in the network. 

hidden_bias = [] 

output_bias = [] 

 

14. Receive the Hidden layer biases and Output layer biases. 

for i in 

range(inputLayerNeurons+1,inputLayerNeurons+hiddenLayerNeurons+outputLayerN

eurons+1): 

 if i > inputLayerNeurons+hiddenLayerNeurons: 

  output_bias.append(float(input("o"+str(i)))) 

 else: 

  hidden_bias.append(float(input("o"+str(i)))) 

 

15. Convert the weight lists and bias lists to array. 

hidden_weights = np.asarray(hidden_weights) 

hidden_bias = np.asarray([hidden_bias]) 

output_weights = np.asarray(output_weights) 

output_bias = np.asarray([output_bias]) 

 

16. Print the initial hidden weights, hidden biases, output weights and 

output biases. 

print("Initial hidden weights: ",end='') 

print(*hidden_weights) 

print("Initial hidden biases: ",end='') 

print(*hidden_bias) 

print("Initial output weights: ",end='') 

print(*output_weights) 



   
  

print("Initial output biases: ",end='') 

print(*output_bias) 

 

17. Initialize the predicted_output. 

predicted_output = [[0],[0],[0],[0]] 

 

18. Train MLP until the predicted output converges to the desired output. 

 

while checkError(predicted_output): 

 epoch += 1 

Step 1: Forward Propagation. 

Calculate Net Input and Output in the Hidden Layer and Output Layer. 

 

 hidden_layer_activation = np.dot(inputs,hidden_weights) 

 hidden_layer_activation += hidden_bias 

 hidden_layer_output = sigmoid(hidden_layer_activation) 

 output_layer_activation = 

np.dot(hidden_layer_output,output_weights) 

 output_layer_activation += output_bias 

 predicted_output = sigmoid(output_layer_activation) 

 

Estimate error at the node in the Output Layer. 

 

 error = expected_output - predicted_output 

 

Step 2: Backward Propagation 

Calculate Error at each node in the Output layer and Hidden layer. 

 

 d_predicted_output = error * 

sigmoid_derivative(predicted_output) 

 error_hidden_layer = d_predicted_output.dot(output_weights.T) 

 d_hidden_layer = error_hidden_layer * 

sigmoid_derivative(hidden_layer_output) 

 

Update all Weights and Biases. 

 

output_weights += hidden_layer_output.T.dot(d_predicted_output) * lr 

output_bias += np.sum(d_predicted_output,axis=0,keepdims=True) * lr 

 hidden_weights += inputs.T.dot(d_hidden_layer) * lr 

 hidden_bias += np.sum(d_hidden_layer,axis=0,keepdims=True) * lr 

 

19. Print the final learned weights and biases of the Hidden layer and 

Output layer. 

print("Final hidden weights: ",end='') 

print(*hidden_weights) 

print("Final hidden bias: ",end='') 

print(*hidden_bias) 

print("Final output weights: ",end='') 

print(*output_weights) 

print("Final output bias: ",end='') 

print(*output_bias) 

 

20. Print the final output obtained for the input data set (i.e., for the 

XOR function) 

print("\nOutput from neural network: ",end='') 

print(*predicted_output) 

 

21. Print the number of epochs executed to learn the weights and biases for 

the model to get    

    the desired output. 

print("\nNo of epochs") 



   
  

print(epoch) 

 

 

 

Complete Program: 

import numpy as np  

 

def abs(x): 

 return x if x>0 else -x 

 

def sigmoid (x): 

    return 1/(1 + np.exp(-x)) 

 

def sigmoid_derivative(x): 

    return x * (1 - x) 

 

def checkError(predicted_output): 

 expected_output = [[0],[1],[1],[0]] 

 for i,j in  zip(expected_output , predicted_output): 

  if abs(i[0]-j[0]) > 0.001: 

   return True 

 return False 

 

#Input datasets 

inputs = np.array([[0,0],[0,1],[1,0],[1,1]]) 

expected_output = np.array([[0],[1],[1],[0]]) 

 

epoch = 0 

lr = 0.1 

 

# inputLayerNeurons = 2 

# hiddenLayerNeurons = 2 

# outputLayerNeurons = 1 

inputLayerNeurons = int(input("enter no of inputLayer")) 

hiddenLayerNeurons = int(input("enter no of hiddenlayer ")) 

outputLayerNeurons = int(input("enter no of outputlayer ")) 

 

hidden_weights = [] 

for i in range(1,inputLayerNeurons+1): 

 hidden_weights_ind = [] 

 for j in 

range(inputLayerNeurons+1,inputLayerNeurons+hiddenLayerNeurons+1): 

  hidden_weights_ind.append(float(input('w'+str(i)+str(j)))) 

 hidden_weights.append(hidden_weights_ind) 

             

output_weights = [] 

for i in range(inputLayerNeurons+1,inputLayerNeurons+hiddenLayerNeurons+1): 

 output_weights_ind = [] 

 for j in 

range(inputLayerNeurons+hiddenLayerNeurons+1,inputLayerNeurons+hiddenLayerN

eurons+outputLayerNeurons+1): 

  output_weights_ind.append(float(input('w'+str(i)+str(j)))) 

 output_weights.append(output_weights_ind) 

 

hidden_bias = [] 

output_bias = [] 

for i in 

range(inputLayerNeurons+1,inputLayerNeurons+hiddenLayerNeurons+outputLayerN

eurons+1): 

 if i > inputLayerNeurons+hiddenLayerNeurons: 

  output_bias.append(float(input("o"+str(i)))) 



   
  

 else: 

  hidden_bias.append(float(input("o"+str(i)))) 

 

hidden_weights = np.asarray(hidden_weights) 

hidden_bias = np.asarray([hidden_bias]) 

output_weights = np.asarray(output_weights) 

output_bias = np.asarray([output_bias]) 

 

print("Initial hidden weights: ",end='') 

print(*hidden_weights) 

print("Initial hidden biases: ",end='') 

print(*hidden_bias) 

print("Initial output weights: ",end='') 

print(*output_weights) 

print("Initial output biases: ",end='') 

print(*output_bias) 

 

predicted_output = [[0],[0],[0],[0]] 

 

#Training algorithm 

 

while checkError(predicted_output): 

 epoch += 1 

 #Forward Propagation 

 hidden_layer_activation = np.dot(inputs,hidden_weights) 

 hidden_layer_activation += hidden_bias 

 hidden_layer_output = sigmoid(hidden_layer_activation) 

 

 output_layer_activation = np.dot(hidden_layer_output,output_weights) 

 output_layer_activation += output_bias 

 predicted_output = sigmoid(output_layer_activation) 

 

 #Backpropagation 

 error = expected_output - predicted_output 

 d_predicted_output = error * sigmoid_derivative(predicted_output) 

  

 error_hidden_layer = d_predicted_output.dot(output_weights.T) 

 d_hidden_layer = error_hidden_layer * 

sigmoid_derivative(hidden_layer_output) 

 

 #Updating Weights and Biases 

 output_weights += hidden_layer_output.T.dot(d_predicted_output) * lr 

 output_bias += np.sum(d_predicted_output,axis=0,keepdims=True) * lr 

 hidden_weights += inputs.T.dot(d_hidden_layer) * lr 

 hidden_bias += np.sum(d_hidden_layer,axis=0,keepdims=True) * lr 

 

print("Final hidden weights: ",end='') 

print(*hidden_weights) 

print("Final hidden bias: ",end='') 

print(*hidden_bias) 

print("Final output weights: ",end='') 

print(*output_weights) 

print("Final output bias: ",end='') 

print(*output_bias) 

 

print("\nOutput from neural network: ",end='') 

print(*predicted_output) 

print("\nNo of epochs") 

print(epoch) 

 

 



   
  

Output: 

= RESTART: multilayer_perceptron_xor.py 

enter no of inputLayer2 

enter no of hiddenlayer 2 

enter no of outputlayer 1 

w133 

w146 

w234 

w245 

w352 

w454 

o31 

o4-6 

o5-3.93 

Initial hidden weights: [3. 6.] [4. 5.] 

Initial hidden biases: [ 1. -6.] 

Initial output weights: [2.] [4.] 

Initial output biases: [-3.93] 

Final hidden weights: [ 6.12370882 10.03281141] [ 6.12342151 10.0272853 ] 

Final hidden bias: [-9.34571401 -4.50662615] 

Final output weights: [-15.62277004] [14.81103743] 

Final output bias: [-7.06705554] 

 

Output from neural network: [0.001] [0.99916398] [0.99916411] [0.00085368] 

 

No of epochs 

14905082 

>>> 

 

Screenshot of the Output: 

 

********************************************************************************** 

EXERCISE - 2 
MLP for the XOR problem in Keras 

import numpy as np 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense 

 

# 1. Define the XOR inputs and expected outputs 

X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], "float32") # Inputs 



   
  

y = np.array([[0], [1], [1], [0]], "float32") # Expected outputs 

 

# 2. Design the neural network model 

model = Sequential() 

# Add a hidden layer with 4 neurons and 'tanh' activation function (or 

'relu') 

model.add(Dense(4, input_dim=2, activation='tanh')) 

# Add the output layer with 1 neuron and 'sigmoid' activation for binary 

classification 

model.add(Dense(1, activation='sigmoid')) 

 

# 3. Compile the model 

# Use binary cross-entropy loss for binary classification and the 'adam' 

optimizer 

model.compile(loss='binary_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

 

# 4. Train the model 

# Train for a sufficient number of epochs (e.g., 1000 or more) 

model.fit(X, y, epochs=1000, verbose=0) # verbose=0 suppresses training 

output 

 

# 5. Evaluate the model 

_, accuracy = model.evaluate(X, y, verbose=0) 

print(f'Accuracy: {accuracy * 100:.2f}%\n') 

 

# 6. Make predictions 

predictions = model.predict(X) 

print("Predictions:") 

for i in range(len(X)): 

    # Round predictions to 0 or 1 for clarity 

    print(f"Input: {X[i]} | Predicted Output: {predictions[i][0]:.4f} | 

Rounded: {round(predictions[i][0])} | Expected: {y[i][0]}") 

 

 

*************************************************************************** 

EXERCISE - 3 

MLP model using Keras with Iris dataset. Validating the model on the test 

data and then plotting the learning curve. 

 

Program Code: 

from pandas import read_csv 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder 

from tensorflow.keras import Sequential 

from tensorflow.keras.layers import Dense 

from tensorflow.keras.optimizers import SGD 

from matplotlib import pyplot 

 

#  Read the dataset ‘Iris.csv’  

df = read_csv('Iris.csv') 

 

#  Split the Iris features into input and output columns 

X = df.values[:, :-1] 

y = df.values[:, -1] 

 

# Check all data are floating point values 

X = X.astype('float32') 

 

# Encode the strings of labels to integer values 



   
  

y = LabelEncoder().fit_transform(y) 

 

# Split the data matrix into train and test dataset and Print the shape of 

train dataset and test dataset. 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

shuffle = True, random_state = 123) 

print("X_train shape: {}".format(X_train.shape)) 

print("X_test shape: {}".format(X_test.shape)) 

print("y_train shape: {}".format(y_train.shape)) 

print("y_test shape: {}".format(y_test.shape)) 

# split randomly the data matrix into training dataset and validation 

dataset  

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, 

test_size=0.2, random_state=1) 

 

# Determine the number of input features 

n_features = X_train.shape[1] 

 

# Define the model 

model = Sequential() 

model.add(Dense(10, activation='relu', kernel_initializer='he_normal', 

input_shape=(n_features,))) 

model.add(Dense(8, activation='relu', kernel_initializer='he_normal')) 

model.add(Dense(3, activation='softmax')) 

 

# Compile the model 

sgd = SGD(learning_rate=0.001, momentum=0.8) 

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', 

metrics=['accuracy']) 

 

# Fit the model 

history = model.fit(X_train, y_train, epochs=150, batch_size=32, verbose=0, 

validation_split=0.3) 

 

# Evaluate the model and print the accuracy 

loss, acc = model.evaluate(X_test, y_test, verbose=0) 

print('Test Accuracy: %.3f' % acc) 

 

# Visualize by plotting the learning curves 

pyplot.title('Learning Curves') 

pyplot.xlabel('Epoch') 

pyplot.ylabel('Cross Entropy') 

pyplot.plot(history.history['loss'], label='train') 

pyplot.plot(history.history['val_loss'], label='val') 

pyplot.legend() 

pyplot.show() 

 

Output: 

(100, 5) (50, 5) (100,) (50,) 

Test Accuracy: 0.960 

>>> 

 

 



   
  

 

*************************************************************************** 

EXERCISE - 4 

MLP model using Keras with Iris dataset. Validating the model on the test 

data and then plotting the accuracy and loss. 

 

Program Code: 

from pandas import read_csv 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras import Sequential 

from tensorflow.keras.layers import Dense 

from matplotlib import pyplot as plt 

#  Read the dataset ‘Iris.csv’  

df = read_csv('Iris.csv') 

#  Split the Iris features into input and output columns 

X = df.values[:, :-1] 

y = df.values[:, -1] 

 

# Check all data are floating point values 

X = X.astype('float32') 

# Encode the strings of labels to integer values 

y = LabelEncoder().fit_transform(y) 

# Split the data matrix into train and test dataset and Print the shape of 

train dataset and test dataset. 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

shuffle = True, random_state = 123) 

print("X_train shape: {}".format(X_train.shape)) 

print("X_test shape: {}".format(X_test.shape)) 

print("y_train shape: {}".format(y_train.shape)) 

print("y_test shape: {}".format(y_test.shape)) 

# split randomly the data matrix into training dataset and validation 

dataset  

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, 

test_size=0.2, random_state=1) 

 

# Determine the number of input features 

n_features = X_train.shape[1] 

 

# Define model 

model = keras.Sequential([ 

    keras.layers.Flatten(input_shape=(n_features,)), 

    keras.layers.Dense(4, activation=tf.nn.relu), 

    keras.layers.Dense(4, activation=tf.nn.relu), 



   
  

    keras.layers.Dense(1, activation=tf.nn.sigmoid), 

]) 

# Compile the model 

model.compile(optimizer='adam', loss='mse', metrics=['accuracy']) 

# Fit the model 

history = model.fit(X_train, y_train, epochs=34, batch_size=32, verbose=0, 

validation_data=(X_val, y_val)) 

 

# Evaluate the model and print the accuracy 

loss, acc = model.evaluate(X_test, y_test, verbose=0) 

print('Test Accuracy: %.3f' % acc) 

 

# Visualize 'Training vs. Validation loss' 

loss_train = history.history['loss'] 

loss_val = history.history['val_loss'] 

epochs = range(1,35) 

plt.plot(epochs, loss_train, 'g', label='Training loss') 

plt.plot(epochs, loss_val, 'b', label='validation loss') 

plt.title('Training vs. Validation loss') 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.legend() 

plt.show() 

 

# Visualize 'Training  Accuracy vs. Validation accuracy' 

loss_train = history.history['accuracy'] 

loss_val = history.history['val_accuracy'] 

epochs = range(1,35) 

plt.plot(epochs, loss_train, 'g', label='Training accuracy') 

plt.plot(epochs, loss_val, 'b', label='validation accuracy') 

plt.title('Training vs. Validation accuracy') 

plt.xlabel('Epochs') 

plt.ylabel('Accuracy') 

plt.legend() 

plt.show() 

 

Output: 

 

 



   
  

 

*************************************************************************** 

Programming Assignment: 

Let us now look at an example of learning in a Multi –Layer Perceptron. The 

given MLP consists of an Input layer, one Hidden layer and an Output layer. 

Input layer has 3neurons, Hidden layer has 2 neurons and a single neuron in 

the Output layer. 

X1 X2 X3 ODesired  

1 1 0 1 

 

Learning rate: =0.6 

The weights and biases are tabulated in Table 17.1. 

Table 17.1: Weights and Biases 

X1 X2 X3 W14 W15 W24 W25 W34 W35 W46 W56 𝜃4 𝜃5 𝜃6 
1 1 0 0.2 0.3 -

0.1 

0.2 0.3 -

0.4 

-

0.3 

0.1 0.1 0.3 -0.3 

 

 


