
REGULARIZATION ON IRIS DATASET USING PYTORCH

import torch

import torch.nn as nn

import torch.optim as optim

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

Load and split

iris = load_iris()

X, y = iris.data, iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

Standardize

scaler = StandardScaler()

X_train = torch.FloatTensor(scaler.fit_transform(X_train))

X_test = torch.FloatTensor(scaler.transform(X_test))

y_train = torch.LongTensor(y_train)

y_test = torch.LongTensor(y_test)

2. Neural Network Model with Dropout

Dropout randomly deactivates neurons during training to prevent over-reliance on

specific features

class IrisNet(nn.Module):

 def __init__(self):

 super().__init__()

 self.fc1 = nn.Linear(4, 16)

 self.dropout = nn.Dropout(0.2) # 20% dropout

 self.fc2 = nn.Linear(16, 3)

 def forward(self, x):

 x = torch.relu(self.fc1(x))

 x = self.dropout(x)

 x = self.fc2(x)

 return x

model = IrisNet()

criterion = nn.CrossEntropyLoss()

3. L1/L2 Regularization

L2 (Weight Decay) is directly supported in the optimizer, while L1 requires

manual addition to the loss

L2 Regularization (Weight Decay)

optimizer = optim.Adam(model.parameters(), lr=0.01,

weight_decay=1e-5)

L1 Regularization (manual addition)

l1_lambda = 0.001

for param in model.parameters():

 l1_loss = l1_lambda * torch.sum(torch.abs(param))

 loss = criterion(output, y_train) + l1_loss

4. Early Stopping Implementation

Early stopping stops training when validation performance stops improving,

preventing over-training

epochs = 100

best_loss = float('inf')

patience = 10

trigger_times = 0

for epoch in range(epochs):

 model.train()

 optimizer.zero_grad()

 outputs = model(X_train)

 loss = criterion(outputs, y_train)

 # Optional L1 inclusion here

 loss.backward()

 optimizer.step()

 # Validation

 model.eval()

 with torch.no_grad():

 val_outputs = model(X_test)

 val_loss = criterion(val_outputs, y_test)

 # Early Stopping check

 if val_loss < best_loss:

 best_loss = val_loss

 trigger_times = 0

 else:

 trigger_times += 1

 if trigger_times >= patience:

 print(f"Early stopping at epoch {epoch}")

 break

5. Summary of Techniques

 L1 (Lasso): Shrinks less important weights to zero, encouraging sparsity.

 L2 (Ridge/Weight Decay): Penalizes large weights, improving model stability.

 Dropout: Randomly ignores neurons to prevent co-dependency.

 Early Stopping: Halts training when validation loss stops improving

**

