REGULARIZATION ON IRIS DATASET USING PYTORCH

import torch

import torch.nn as nn

import torch.optim as optim

from sklearn.datasets import load iris

from sklearn.model selection import train test split

from sklearn.preprocessing import StandardScaler

Load and split

iris = load iris()

X, y = iris.data, iris.target

X train, X test, y train, y test = train test split(X, vy,
test size=0.2, random state=42)

Standardize

scaler = StandardScaler ()

X train = torch.FloatTensor (scaler.fit transform(X train))
X test = torch.FloatTensor (scaler.transform(X test))

y train = torch.LongTensor (y train)

y test = torch.LongTensor (y test)

2. Neural Network Model with Dropout
Dropout randomly deactivates neurons during training to prevent over-reliance on
specific features

class IrisNet (nn.Module) :
def init (self):

super (). init ()

self.fcl = nn.Linear (4, 106)

self.dropout = nn.Dropout(0.2) # 20% dropout

self.fc2 = nn.Linear(l6, 3)

def forward(self, x):

torch.relu(self.fcl (x))

X

X self.dropout (x)

X self.fc2 (x)

return x

model = IrisNet ()

criterion = nn.CrossEntropyLoss ()

3. L1/L2 Regularization
L2 (Weight Decay) is directly supported in the optimizer, while L1 requires
manual addition to the loss

L2 Regularization (Weight Decay)

optimizer = optim.Adam (model.parameters(), 1lr=0.01,
weight decay=le-5)

L1 Regularization (manual addition)
11 lambda = 0.001
for param in model.parameters() :
11 loss = 11 lambda * torch.sum(torch.abs (param))

loss = criterion(output, y train) + 11 loss

4. Early Stopping Implementation
Early stopping stops training when validation performance stops improving,
preventing over-training

epochs = 100

best loss = float('inf')
patience = 10

trigger times = 0

for epoch in range (epochs) :
model.train ()
optimizer.zero grad()
outputs = model (X train)

loss = criterion(outputs, y train)

Optional L1 inclusion here

loss.backward ()

optimizer.step ()

Validation
model.eval ()
with torch.no grad():
val outputs = model (X test)

val loss = criterion(val outputs, y test)

Early Stopping check
if val loss < best loss:
best loss = val loss
trigger times = 0
else:
trigger times += 1

if trigger times >= patience:

print (f"Early stopping at epoch {epoch}")

break

5. Summary of Techniques

e L1 (Lasso): Shrinks less important weights to zero, encouraging sparsity.

o L2 (Ridge/Weight Decay): Penalizes large weights, improving model stability.
e Dropout: Randomly ignores neurons to prevent co-dependency.

o Early Stopping: Halts training when validation loss stops improving

KAhhkhkkhkhkhkkhkhkhkhhkhkhkrkhkrhhkhkhhkhkhhkhhhkhkhhkhkhhkhkhhkhkhhkhkihhkhkirhhkihhkhhhkrihiihhihkkhhhhhhkiihkiiikixk

