REGULARIZATION ON IRIS DATASET USING KERAS

import numpy as np

from sklearn.datasets import load iris

from sklearn.model selection import train test split

from sklearn.preprocessing import StandardScaler, OneHotEncoder
from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout

from tensorflow.keras.regularizers import 11, 12, 11 12

from tensorflow.keras.callbacks import EarlyStopping

import matplotlib.pyplot as plt

Step 1: Load and Preprocess the Iris Dataset
The Iris dataset has 4 features and 3 classes. Preprocessing involves scaling
features and one-hot encoding the labels for categorical cross-entropy loss

Load the dataset
iris = load iris()
X = iris.data

y = iris.target

Split into training and testing data (use a validation set for
early stopping)

X train, X test, y train, y test = train test split(X, vy,
test size=0.3, random state=42)

X train, X val, y train, y val = train test split(X train,
y train, test size=0.2, random state=42) # 20% of training data
for validation

Scale features
scaler = StandardScaler ()

X train scaled = scaler.fit transform(X train)

X val scaled = scaler.transform(X val)

X test scaled = scaler.transform(X test)

One-hot encode the labels

encoder = OneHotEncoder (sparse output=False)

y train encoded = encoder.fit transform(y train.reshape(-1, 1))
y _val encoded = encoder.transform(y val.reshape (-1, 1))

y _test encoded = encoder.transform(y test.reshape (-1, 1))

input dim = X train scaled.shape[l]

output dim = y train encoded.shape[1l]

Step 2: Build and Train a Baseline Model (No Regularization)
Establish a baseline model to compare against the regularized models

def build baseline model() :
model = Sequential ()
model.add (Dense (10, input dim=input dim, activation='relu'))
model.add (Dense (10, activation='relu'))
model.add (Dense (output dim, activation='softmax'))

model.compile (optimizer="adam',
loss="'categorical crossentropy', metrics=['accuracy'])

return model

Train the baseline model
baseline model = build baseline model ()

history baseline = baseline model.fit (X train scaled,
y train encoded,

validation data=(X val scaled, y val encoded),

epochs=100, batch size=10,
verbose=0)

Step 3: Implement L1 Regularization
Apply L1 regularization to the kernel (weights) of the dense layers

def build 11 model (reg factor=0.01):
model = Sequential ()

model.add (Dense (10, input dim=input dim, activation='relu',
kernel regularizer=1l1l(reg factor)))

model.add (Dense (10, activation='relu',
kernel regularizer=1l1(reg factor)))

model.add (Dense (output dim, activation='softmax'))

model.compile (optimizer="'adam',
loss="'categorical crossentropy', metrics=['accuracy'])

return model

Train the L1 model
11 model = build 11 model ()
history 11 = 11 model.fit (X train scaled, y train encoded,

validation data=(X val scaled,
y _val encoded),

epochs=100, batch size=10, verbose=0)

Step 4: Implement L2 Regularization
Apply L2 regularization (also known as weight decay) to the kernel of the dense
layers

def build 12 model (reg factor=0.01):
model = Sequential ()

model.add (Dense (10, input dim=input dim, activation='relu',
kernel regularizer=12(reg factor)))

model.add (Dense (10, activation='relu',
kernel regularizer=12(reg factor)))

model.add (Dense (output dim, activation='softmax'))

model.compile (optimizer="'adam',
loss="'categorical crossentropy', metrics=['accuracy'])

return model

Train the L2 model
12 model = build 12 model()
history 12 = 12 model.fit (X train scaled, y train encoded,

validation data=(X val scaled,
y _val encoded),

epochs=100, batch size=10, verbose=0)

Step 5: Implement Dropout Regularization
Add Dropout layers between existing layers to randomly drop neurons during
training

def build dropout model (rate=0.3):
model = Sequential ()
model.add (Dense (10, input dim=input dim, activation='relu'))
model.add (Dropout (rate)) # Dropout layer
model.add (Dense (10, activation='relu'))
model .add (Dropout (rate)) # Dropout layer
model.add (Dense (output dim, activation='softmax'))

model.compile (optimizer="adam',
loss="'categorical crossentropy', metrics=['accuracy'])

return model

Train the Dropout model

dropout model = build dropout model ()

history dropout = dropout model.fit (X train scaled,
y train encoded,

validation data=(X val scaled, y val encoded),

epochs=100, batch size=10,
verbose=0)

Step 6: Implement Early Stopping
Use the EarlyStopping callback to halt training when the validation loss stops
Improving to prevent overfitting

def build es model():
model = Sequential ()
model.add (Dense (10, input dim=input dim, activation='relu'))
model.add (Dense (10, activation='relu'))
model.add (Dense (output dim, activation='softmax'))

model.compile (optimizer="'adam',
loss="'categorical crossentropy', metrics=['accuracy'])

return model

Define the Early Stopping callback

Monitor 'val loss' and stop if no improvement for 'patience'
epochs

early stopping callback = EarlyStopping(monitor='val loss',
patience=5, restore best weights=True)

Train the model with Early Stopping
es model = build es model ()
history es = es model.fit (X train scaled, y train encoded,

validation data=(X val scaled,
y _val encoded),

epochs=100, batch size=10,
callbacks=[early stopping callback], verbose=0)

Step 7: Analyze and Compare Results
Evaluate all models on the test set and visualize the training/validation loss to
observe the effects of regularization

Evaluate models

print ("Baseline Model Test Accuracy:",
baseline model.evaluate (X test scaled, y test encoded,
verbose=0) [1])

print ("Ll Model Test Accuracy:",
11 model.evaluate (X test scaled, y test encoded, verbose=0)[1])

print ("L2 Model Test Accuracy:",
12 model.evaluate (X test scaled, y test encoded, verbose=0)([1])

print ("Dropout Model Test Accuracy:",
dropout model.evaluate (X test scaled, y test encoded,
verbose=0) [1])

print ("Early Stopping Model Test Accuracy:",
es model.evaluate (X test scaled, y test encoded, verbose=0) [1])

Plot training and validation loss for comparison (example for
baseline)

plt.figure(figsize=(10, 5))

plt.plot (history baseline.history['loss'], label='Baseline
Training Loss')

plt.plot (history baseline.history['val loss'], label='Baseline
Validation Loss')

plt.title('Model Loss Comparison')
plt.ylabel ('Loss"'")

plt.xlabel ('Epoch')

plt.legend()

plt.show ()

