
REGULARIZATION ON IRIS DATASET USING KERAS

import numpy as np

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler, OneHotEncoder

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout

from tensorflow.keras.regularizers import l1, l2, l1_l2

from tensorflow.keras.callbacks import EarlyStopping

import matplotlib.pyplot as plt

Step 1: Load and Preprocess the Iris Dataset

The Iris dataset has 4 features and 3 classes. Preprocessing involves scaling

features and one-hot encoding the labels for categorical cross-entropy loss

Load the dataset

iris = load_iris()

X = iris.data

y = iris.target

Split into training and testing data (use a validation set for

early stopping)

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=42)

X_train, X_val, y_train, y_val = train_test_split(X_train,

y_train, test_size=0.2, random_state=42) # 20% of training data

for validation

Scale features

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_val_scaled = scaler.transform(X_val)

X_test_scaled = scaler.transform(X_test)

One-hot encode the labels

encoder = OneHotEncoder(sparse_output=False)

y_train_encoded = encoder.fit_transform(y_train.reshape(-1, 1))

y_val_encoded = encoder.transform(y_val.reshape(-1, 1))

y_test_encoded = encoder.transform(y_test.reshape(-1, 1))

input_dim = X_train_scaled.shape[1]

output_dim = y_train_encoded.shape[1]

Step 2: Build and Train a Baseline Model (No Regularization)

Establish a baseline model to compare against the regularized models

def build_baseline_model():

 model = Sequential()

 model.add(Dense(10, input_dim=input_dim, activation='relu'))

 model.add(Dense(10, activation='relu'))

 model.add(Dense(output_dim, activation='softmax'))

 model.compile(optimizer='adam',

loss='categorical_crossentropy', metrics=['accuracy'])

 return model

Train the baseline model

baseline_model = build_baseline_model()

history_baseline = baseline_model.fit(X_train_scaled,

y_train_encoded,

validation_data=(X_val_scaled, y_val_encoded),

 epochs=100, batch_size=10,

verbose=0)

Step 3: Implement L1 Regularization

Apply L1 regularization to the kernel (weights) of the dense layers

def build_l1_model(reg_factor=0.01):

 model = Sequential()

 model.add(Dense(10, input_dim=input_dim, activation='relu',

kernel_regularizer=l1(reg_factor)))

 model.add(Dense(10, activation='relu',

kernel_regularizer=l1(reg_factor)))

 model.add(Dense(output_dim, activation='softmax'))

 model.compile(optimizer='adam',

loss='categorical_crossentropy', metrics=['accuracy'])

 return model

Train the L1 model

l1_model = build_l1_model()

history_l1 = l1_model.fit(X_train_scaled, y_train_encoded,

 validation_data=(X_val_scaled,

y_val_encoded),

 epochs=100, batch_size=10, verbose=0)

Step 4: Implement L2 Regularization

Apply L2 regularization (also known as weight decay) to the kernel of the dense

layers

def build_l2_model(reg_factor=0.01):

 model = Sequential()

 model.add(Dense(10, input_dim=input_dim, activation='relu',

kernel_regularizer=l2(reg_factor)))

 model.add(Dense(10, activation='relu',

kernel_regularizer=l2(reg_factor)))

 model.add(Dense(output_dim, activation='softmax'))

 model.compile(optimizer='adam',

loss='categorical_crossentropy', metrics=['accuracy'])

 return model

Train the L2 model

l2_model = build_l2_model()

history_l2 = l2_model.fit(X_train_scaled, y_train_encoded,

 validation_data=(X_val_scaled,

y_val_encoded),

 epochs=100, batch_size=10, verbose=0)

Step 5: Implement Dropout Regularization

Add Dropout layers between existing layers to randomly drop neurons during

training

def build_dropout_model(rate=0.3):

 model = Sequential()

 model.add(Dense(10, input_dim=input_dim, activation='relu'))

 model.add(Dropout(rate)) # Dropout layer

 model.add(Dense(10, activation='relu'))

 model.add(Dropout(rate)) # Dropout layer

 model.add(Dense(output_dim, activation='softmax'))

 model.compile(optimizer='adam',

loss='categorical_crossentropy', metrics=['accuracy'])

 return model

Train the Dropout model

dropout_model = build_dropout_model()

history_dropout = dropout_model.fit(X_train_scaled,

y_train_encoded,

validation_data=(X_val_scaled, y_val_encoded),

 epochs=100, batch_size=10,

verbose=0)

Step 6: Implement Early Stopping

Use the EarlyStopping callback to halt training when the validation loss stops

improving to prevent overfitting

def build_es_model():

 model = Sequential()

 model.add(Dense(10, input_dim=input_dim, activation='relu'))

 model.add(Dense(10, activation='relu'))

 model.add(Dense(output_dim, activation='softmax'))

 model.compile(optimizer='adam',

loss='categorical_crossentropy', metrics=['accuracy'])

 return model

Define the Early Stopping callback

Monitor 'val_loss' and stop if no improvement for 'patience'

epochs

early_stopping_callback = EarlyStopping(monitor='val_loss',

patience=5, restore_best_weights=True)

Train the model with Early Stopping

es_model = build_es_model()

history_es = es_model.fit(X_train_scaled, y_train_encoded,

 validation_data=(X_val_scaled,

y_val_encoded),

 epochs=100, batch_size=10,

callbacks=[early_stopping_callback], verbose=0)

Step 7: Analyze and Compare Results

Evaluate all models on the test set and visualize the training/validation loss to

observe the effects of regularization

Evaluate models

print("Baseline Model Test Accuracy:",

baseline_model.evaluate(X_test_scaled, y_test_encoded,

verbose=0)[1])

print("L1 Model Test Accuracy:",

l1_model.evaluate(X_test_scaled, y_test_encoded, verbose=0)[1])

print("L2 Model Test Accuracy:",

l2_model.evaluate(X_test_scaled, y_test_encoded, verbose=0)[1])

print("Dropout Model Test Accuracy:",

dropout_model.evaluate(X_test_scaled, y_test_encoded,

verbose=0)[1])

print("Early Stopping Model Test Accuracy:",

es_model.evaluate(X_test_scaled, y_test_encoded, verbose=0)[1])

Plot training and validation loss for comparison (example for

baseline)

plt.figure(figsize=(10, 5))

plt.plot(history_baseline.history['loss'], label='Baseline

Training Loss')

plt.plot(history_baseline.history['val_loss'], label='Baseline

Validation Loss')

plt.title('Model Loss Comparison')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend()

plt.show()

