Chapter 19

How to Classify Black and White
Photos of Clothing

The Fashion-MNIST clothing classification problem is a new standard dataset used in computer
vision and deep learning. Although the dataset is relatively simple, it can be used as the basis
for learning and practicing how to develop, evaluate, and use deep convolutional neural networks
for image classification from scratch. This includes how to develop a robust test harness for
estimating the performance of the model, how to explore improvements to the model, and how
to save the model and later load it to make predictions on new data. In this tutorial, you will
discover how to develop a convolutional neural network for clothing classification from scratch.
After completing this tutorial, you will know:

e How to develop a test harness to develop a robust evaluation of a model and establish a
baseline of performance for a classification task.

e How to explore extensions to a baseline model to improve learning and model capacity.

e How to develop a finalized model, evaluate the performance of the final model, and use it
to make predictions on new images.

Let’s get started.

19.1 Tutorial Overview

This tutorial is divided into five parts; they are:
1. Fashion-MNIST Clothing Classification
2. Model Evaluation Methodology
3. How to Develop a Baseline Model
4. How to Develop an Improved Model

5. How to Finalize the Model and Make Predictions

207



19.2. Fashion-MNIST Clothing Classification 208

19.2 Fashion-MNIST Clothing Classification

The Fashion-MNIST dataset is proposed as a more challenging replacement dataset for the
MNIST dataset. It is a dataset comprised of 60,000 small square 28 x 28 pixel grayscale images
of items of 10 types of clothing, such as shoes, t-shirts, dresses, and more. The mapping of all
0-9 integers to class labels is listed below.

e 0: T-shirt/top
e 1: Trouser

e 2: Pullover

e 3: Dress

e 4: Coat

e 5: Sandal

e G: Shirt

e 7: Sneaker

e 8: Bag

e 9: Ankle boot

It is a more challenging classification problem than MNIST and top results are achieved by
deep learning convolutional neural networks with a classification accuracy of about 90% to 95%
on the hold out test dataset. The example below loads the Fashion-MNIST dataset using the
Keras API and creates a plot of the first nine images in the training dataset.

# example of loading the fashion mnist dataset
from matplotlib import pyplot
from keras.datasets import fashion_mnist
# load dataset
(trainX, trainy), (testX, testy) = fashion_mnist.load_data()
# summarize loaded dataset
print('Train: X=Ys, y=ks' % (trainX.shape, trainy.shape))
print('Test: X=Vs, y=%s' % (testX.shape, testy.shape))
# plot first few images
for i in range(9):
# define subplot
pyplot.subplot(330 + 1 + i)
# plot raw pixel data
pyplot.imshow(trainX[i], cmap=pyplot.get_cmap('gray'))
# show the figure
pyplot.show()

Listing 19.1: Example of loading and summarizing the Fashion-MNIST dataset.

Running the example loads the Fashion-MNIST train and test dataset and prints their shape.
We can see that there are 60,000 examples in the training dataset and 10,000 in the test dataset
and that images are indeed square with 28 x 28 pixels.




19.3. Model Evaluation Methodology 209

Train: X=(60000, 28, 28), y=(60000,)
Test: X=(10000, 28, 28), y=(10000,)

Listing 19.2: Example output from loading and summarizing the Fashion-MNIST dataset.

A plot of the first nine images in the dataset is also created showing that indeed the images
are grayscale photographs of items of clothing.

Figure 19.1: Plot of a Subset of Images From the Fashion-MNIST Dataset.

19.3 Model Evaluation Methodology

The Fashion-MNIST dataset was developed as a response to the wide use of the MNIST dataset,
that has been effectively solved given the use of modern convolutional neural networks. Fashion-
MNIST was proposed to be a replacement for MNIST, and although it has not been solved,
it is possible to routinely achieve error rates of 10% or less. Like MNIST, it can be a useful
starting point for developing and practicing a methodology for solving image classification using
convolutional neural networks. Instead of reviewing the literature on well-performing models on
the dataset, we can develop a new model from scratch.

The dataset already has a well-defined train and test dataset that we can use. In order to
estimate the performance of a model for a given training run, we can further split the training set




19.4. How to Develop a Baseline Model 210

into a train and validation dataset. Performance on the train and validation dataset over each
run can then be plotted to provide learning curves and insight into how well a model is learning
the problem. The Keras API supports this by specifying the validation data argument to
the model.fit () function when training the model, that will, in turn, return an object that
describes model performance for the chosen loss and metrics on each training epoch.

# record model performance on a validation dataset during training
history = model.fit(..., validation_data=(valX, valY))

Listing 19.3: Example of fitting a model with a validation dataset.

In order to estimate the performance of a model on the problem in general, we can use
k-fold cross-validation, perhaps 5-fold cross-validation. This will give some account of the
model’s variance with both respect to differences in the training and test datasets and the
stochastic nature of the learning algorithm. The performance of a model can be taken as the
mean performance across k-folds, given with the standard deviation, that could be used to
estimate a confidence interval if desired. We can use the KFold class from the scikit-learn API
to implement the k-fold cross-validation evaluation of a given neural network model. There are
many ways to achieve this, although we can choose a flexible approach where the KFold is only
used to specify the row indexes used for each split.

# example of k-fold cv for a neural net

data = ...

# prepare cross validation

kfold = KFold(5, shuffle=True, random_state=1)

# enumerate splits

for train_ix, test_ix in kfold.split(data):
model = ...

Listing 19.4: Example of evaluating a model with k-fold cross-validation.

We will hold back the actual test dataset and use it as an evaluation of our final model.

19.4 How to Develop a Baseline Model

The first step is to develop a baseline model. This is critical as it both involves developing
the infrastructure for the test harness so that any model we design can be evaluated on the
dataset, and it establishes a baseline in model performance on the problem, by which all
improvements can be compared. The design of the test harness is modular, and we can develop
a separate function for each piece. This allows a given aspect of the test harness to be modified
or inter-changed, if we desire, separately from the rest. We can develop this test harness with
five key elements. They are the loading of the dataset, the preparation of the dataset, the
definition of the model, the evaluation of the model, and the presentation of results.

19.4.1 Load Dataset

We know some things about the dataset. For example, we know that the images are all pre-
segmented (e.g. each image contains a single item of clothing), that the images all have the




19.4. How to Develop a Baseline Model 211

same square size of 28 x 28 pixels, and that the images are grayscale. Therefore, we can load
the images and reshape the data arrays to have a single color channel.

# load dataset

(trainX, trainY), (testX, testY) = fashion_mnist.load_data()
# reshape dataset to have a single channel

trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))

testX = testX.reshape((testX.shapel[O], 28, 28, 1))

Listing 19.5: Example of adding a channels dimension to the loaded dataset.

We also know that there are 10 classes and that classes are represented as unique integers.
We can, therefore, use a one hot encoding for the class element of each sample, transforming
the integer into a 10 element binary vector with a 1 for the index of the class value. We can
achieve this with the to_categorical() utility function.

# one hot encode target values
trainY = to_categorical(trainY)
testY = to_categorical(testY)

Listing 19.6: Example of one hot encoding the target variable.

The load_dataset () function implements these behaviors and can be used to load the
dataset.

# load train and test dataset
def load_dataset():
# load dataset
(trainX, trainY), (testX, testY) = fashion_mnist.load_data()
# reshape dataset to have a single channel
trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))
testX = testX.reshape((testX.shape[0], 28, 28, 1))
# one hot encode target values
trainY = to_categorical(trainY)
testY = to_categorical (testY)
return trainX, trainY, testX, testY

Listing 19.7: Example of a function for loading the dataset.

19.4.2 Prepare Pixel Data

We know that the pixel values for each image in the dataset are unsigned integers in the range
between black and white, or 0 and 255. We do not know the best way to scale the pixel values
for modeling, but we know that some scaling will be required. A good starting point is to
normalize the pixel values of grayscale images, e.g. rescale them to the range [0,1]. This involves
first converting the data type from unsigned integers to floats, then dividing the pixel values by
the maximum value.

# convert from integers to floats
train_norm = train.astype('float32')
test_norm = test.astype('float32')

# normalize to range 0-1




19.4. How to Develop a Baseline Model 212

train_norm = train_norm / 255.0
test_norm = test_norm / 255.0

Listing 19.8: Example of normalizing the pixel values.

The prep_pixels() function below implements these behaviors and is provided with the
pixel values for both the train and test datasets that will need to be scaled.

# scale pixels

def prep_pixels(train, test):
# convert from integers to floats
train_norm = train.astype('float32')
test_norm = test.astype('float32')
# normalize to range 0-1
train_norm = train_norm / 255.0
test_norm = test_norm / 255.0
# return normalized images
return train_norm, test_norm

Listing 19.9: Example of a function for scaling the pixel values.

This function must be called to prepare the pixel values prior to any modeling.

19.4.3 Define Model

Next, we need to define a baseline convolutional neural network model for the problem. The
model has two main aspects: the feature extraction front end comprised of convolutional and
pooling layers, and the classifier backend that will make a prediction. For the convolutional
front end, we can start with a single convolutional layer with a small filter size (3,3) and a
modest number of filters (32) followed by a max pooling layer. The filter maps can then be
flattened to provide features to the classifier.

Given that the problem is a multiclass classification, we know that we will require an output
layer with 10 nodes in order to predict the probability distribution of an image belonging to
each of the 10 classes. This will also require the use of a softmax activation function. Between
the feature extractor and the output layer, we can add a dense layer to interpret the features, in
this case with 100 nodes. All layers will use the ReLLU activation function and the He weight
initialization scheme, both best practices.

We will use a conservative configuration for the stochastic gradient descent optimizer with
a learning rate of 0.01 and a momentum of 0.9. The categorical cross-entropy loss function
will be optimized, suitable for multiclass classification, and we will monitor the classification
accuracy metric, which is appropriate given we have the same number of examples in each of
the 10 classes. The define model () function below will define and return this model.

# define cnn model
def define_model():
model = Sequential()
model .add(Conv2D (32, (3, 3), activation='relu', kernel_initializer='he_uniform',
input_shape=(28, 28, 1)))
model .add (MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense (100, activation='relu', kernel_initializer='he_uniform'))
model .add(Dense (10, activation='softmax'))
# compile model




19.4. How to Develop a Baseline Model 213

opt = SGD(1r=0.01, momentum=0.9)
model .compile (optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
return model

Listing 19.10: Example of a function for defining the model.

19.4.4 Evaluate Model

After the model is defined, we need to evaluate it. The model will be evaluated using 5-fold
cross-validation. The value of k=5 was chosen to provide a baseline for both repeated evaluation
and to not be too large as to require a long running time. Each test set will be 20% of the
training dataset, or about 12,000 examples, close to the size of the actual test set for this problem.
The training dataset is shuffled prior to being split and the sample shuffling is performed each
time so that any model we evaluate will have the same train and test datasets in each fold,
providing an apples-to-apples comparison.

We will train the baseline model for a modest 10 training epochs with a default batch size of
32 examples. The test set for each fold will be used to evaluate the model both during each
epoch of the training run, so we can later create learning curves, and at the end of the run, so we
can estimate the performance of the model. As such, we will keep track of the resulting history
from each run, as well as the classification accuracy of the fold. The evaluate model () function
below implements these behaviors, taking the training dataset as arguments and returning a list
of accuracy scores and training histories that can be later summarized.

# evaluate a model using k-fold cross-validation
def evaluate_model(dataX, dataY, n_folds=5):
scores, histories = list(), list()
# prepare cross validation
kfold = KFold(n_folds, shuffle=True, random_state=1)
# enumerate splits
for train_ix, test_ix in kfold.split(dataX):
# define model
model = define_model()
# select rows for train and test
trainX, trainY, testX, testY = dataX[train_ix], dataY[train_ix], dataX[test_ix],
dataY[test_ix]
# fit model
history = model.fit(trainX, trainY, epochs=10, batch_size=32, validation_data=(testX,
testY), verbose=0)
# evaluate model
_, acc = model.evaluate(testX, testY, verbose=0)
print('> %.3f' % (acc * 100.0))
# append scores
scores.append (acc)
histories.append(history)
return scores, histories

Listing 19.11: Example of a function for evaluating the performance of a model.

19.4.5 Present Results

Once the model has been evaluated, we can present the results. There are two key aspects to
present: the diagnostics of the learning behavior of the model during training and the estimation




19.4. How to Develop a Baseline Model 214

of the model performance. These can be implemented using separate functions. First, the
diagnostics involve creating a line plot showing model performance on the train and test set
during each fold of the k-fold cross-validation. These plots are valuable for getting an idea of
whether a model is overfitting, underfitting, or has a good fit for the dataset. We will create a
single figure with two subplots, one for loss and one for accuracy. Blue lines will indicate model
performance on the training dataset and orange lines will indicate performance on the hold out
test dataset. The summarize diagnostics() function below creates and shows this plot given
the collected training histories.

# plot diagnostic learning curves
def summarize_diagnostics(histories):
for i in range(len(histories)):
# plot loss
pyplot.subplot(211)
pyplot.title('Cross Entropy Loss')
pyplot.plot(histories[i] .history['loss'], color='blue', label='train')
pyplot.plot(histories([i] .history['val_loss'], color='orange', label='test')
# plot accuracy
pyplot.subplot(212)
pyplot.title('Classification Accuracy')
pyplot.plot(histories[i] .history['acc'], color='blue', label='train')
pyplot.plot(histories[i] .history['val_acc'], color='orange', label='test')
pyplot.show()

Listing 19.12: Example of a function for plotting learning curves.

Next, the classification accuracy scores collected during each fold can be summarized by
calculating the mean and standard deviation. This provides an estimate of the average expected
performance of the model trained on this dataset, with an estimate of the average variance in
the mean. We will also summarize the distribution of scores by creating and showing a box and
whisker plot. The summarize performance() function below implements this for a given list of
scores collected during model evaluation.

# summarize model performance
def summarize_performance(scores) :
# print summary
print('Accuracy: mean=%.3f std=%.3f, n=Vd' % (mean(scores)*100, std(scores)*100,
len(scores)))
# box and whisker plots of results
pyplot.boxplot(scores)
pyplot.show()

Listing 19.13: Example of a function for summarizing model performance.

19.4.6 Complete Example

We need a function that will drive the test harness. This involves calling all of the defined
functions.

# run the test harness for evaluating a model
def run_test_harness():
# load dataset
trainX, trainY, testX, testY = load_dataset()
# prepare pixel data



19.4. How to Develop a Baseline Model 215

trainX, testX = prep_pixels(trainX, testX)

# evaluate model

scores, histories = evaluate_model (model, trainX, trainY)
# learning curves

summarize_diagnostics(histories)

# summarize estimated performance

summarize_performance (scores)

Listing 19.14: Example of a function for driving the test harness.

We now have everything we need; the complete code example for a baseline convolutional
neural network model on the MNIST dataset is listed below.

# baseline cnn model for fashion mnist
from numpy import mean

from numpy import std

from matplotlib import pyplot

from sklearn.model_selection import KFold
from keras.datasets import fashion_mnist
from keras.utils import to_categorical
from keras.models import Sequential

from keras.layers import Conv2D

from keras.layers import MaxPooling2D
from keras.layers import Dense

from keras.layers import Flatten

from keras.optimizers import SGD

# load train and test dataset
def load_dataset():
# load dataset
(trainX, trainY), (testX, testY) = fashion_mnist.load_data()
# reshape dataset to have a single channel
trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))
testX = testX.reshape((testX.shape[0], 28, 28, 1))
# one hot encode target values
trainY = to_categorical(trainV)
testY = to_categorical (testY)
return trainX, trainY, testX, testY

# scale pixels

def prep_pixels(train, test):
# convert from integers to floats
train_norm = train.astype('float32')
test_norm = test.astype('float32')
# normalize to range 0-1
train_norm = train_norm / 255.0
test_norm = test_norm / 255.0
# return normalized images
return train_norm, test_norm

# define cnn model
def define_model():
model = Sequential()
model.add(Conv2D (32, (3, 3), activation='relu', kernel_initializer='he_uniform',
input_shape=(28, 28, 1)))
model .add (MaxPooling2D((2, 2)))
model.add(Flatten())




19.4. How to Develop a Baseline Model 216

model .add(Dense (100, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(10, activation='softmax'))

# compile model

opt = SGD(1r=0.01, momentum=0.9)

model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
return model

# evaluate a model using k-fold cross-validation
def evaluate_model(dataX, dataY, n_folds=5):
scores, histories = list(), 1list()
# prepare cross validation
kfold = KFold(n_folds, shuffle=True, random_state=1)
# enumerate splits
for train_ix, test_ix in kfold.split(dataX):
# define model
model = define_model()
# select rows for train and test
trainX, trainY, testX, testY = dataX[train_ix], dataY[train_ix], dataX[test_ix],
dataY[test_ix]
# fit model
history = model.fit(trainX, trainY, epochs=10, batch_size=32, validation_data=(testX,
testY), verbose=0)
# evaluate model
_, acc = model.evaluate(testX, testY, verbose=0)
print('> %.3f" % (acc * 100.0))
# append scores
scores.append (acc)
histories.append(history)
return scores, histories

# plot diagnostic learning curves
def summarize_diagnostics(histories):
for i in range(len(histories)):
# plot loss
pyplot.subplot(211)
pyplot.title('Cross Entropy Loss')
pyplot.plot(histories[i] .history['loss'], color='blue', label='train')
pyplot.plot(histories[i] .history['val_loss'], color='orange', label='test')
# plot accuracy
pyplot.subplot (212)
pyplot.title('Classification Accuracy')
pyplot.plot(histories[i] .history['acc'], color='blue', label='train')
pyplot.plot(histories[i] .history['val_acc'], color='orange', label='test')
pyplot.show()

# summarize model performance
def summarize_performance(scores):
# print summary
print('Accuracy: mean=%.3f std=%.3f, n=%d' % (mean(scores)*100, std(scores)*100,
len(scores)))
# box and whisker plots of results
pyplot.boxplot(scores)
pyplot.show()

# run the test harness for evaluating a model
def run_test_harness():




19.4. How to Develop a Baseline Model 217

# load dataset

trainX, trainY, testX, testY = load_dataset()

# prepare pixel data

trainX, testX = prep_pixels(trainX, testX)

# evaluate model

scores, histories = evaluate_model(trainX, trainY)
# learning curves

summarize_diagnostics(histories)

# summarize estimated performance
summarize_performance(scores)

# entry point, run the test harness
run_test_harness()

Listing 19.15: Example of defining and evaluating a baseline model on the dataset.

Running the example prints the classification accuracy for each fold of the cross-validation
process. This is helpful to get an idea that the model evaluation is progressing. We can see that
for each fold, the baseline model achieved an error rate below 10%, and in two cases 98% and
99% accuracy. These are good results.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

91.200
91.217
90.958
91.242
91.317

V V V VvV V

Listing 19.16: Example output from during the evaluation of each baseline model.

Next, a diagnostic plot is shown, giving insight into the learning behavior of the model across
each fold. In this case, we can see that the model generally achieves a good fit, with train and
test learning curves converging. There may be some signs of slight overfitting.




19.4. How to Develop a Baseline Model 218

Cross Entropy Loss

0.4 1

0.3

0.2

0.1 -

0 2 Classifichtion Accurdcy 8

0.950 A
0.925 A
0.900 -

0.875 /
0.850 -
0

0.825

Figure 19.2: Loss and Accuracy Learning Curves for the Baseline Model on the Fashion-MNIST
Dataset During k-Fold Cross-Validation.

Next, the summary of the model performance is calculated. We can see in this case, the
model has an estimated skill of about 91%, which is impressive.

Accuracy: mean=91.187 std=0.121, n=5

Listing 19.17: Example output from the final evaluation of the baseline model.

Finally, a box and whisker plot is created to summarize the distribution of accuracy scores.




19.5. How to Develop an Improved Model 219

0.9130 A

0.9125

0.9120 A

0.9115 A

0.9110 A

0.9105 A

0.9100 A

0.9095

Figure 19.3: Box and Whisker Plot of Accuracy Scores for the Baseline Model on the Fashion-
MNIST Dataset Evaluated Using k-Fold Cross-Validation.

As we would expect, the distribution spread across the low-nineties. We now have a robust
test harness and a well-performing baseline model.

19.5 How to Develop an Improved Model

There are many ways that we might explore improvements to the baseline model. We will look
at areas that often result in an improvement, so-called low-hanging fruit. The first will be
a change to the convolutional operation to add padding and the second will build on this to
increase the number of filters.

19.5.1 Padding Convolutions

Adding padding to the convolutional operation can often result in better model performance, as
more of the input image of feature maps are given an opportunity to participate or contribute
to the output. By default, the convolutional operation uses ‘valid’ padding, which means that
convolutions are only applied where possible. This can be changed to ‘same’ padding so that
zero values are added around the input such that the output has the same size as the input.




19.5. How to Develop an Improved Model 220

model.add(Conv2D(32, (3, 3), padding='same', activation='relu',
kernel_initializer='he_uniform', input_shape=(28, 28, 1)))

Listing 19.18: Example of padding convolutional layers.

The full code listing including the change to padding is provided below for completeness.

# model with padded convolutions for the fashion mnist dataset
from numpy import mean

from numpy import std

from matplotlib import pyplot

from sklearn.model_selection import KFold
from keras.datasets import fashion_mnist
from keras.utils import to_categorical
from keras.models import Sequential

from keras.layers import Conv2D

from keras.layers import MaxPooling2D
from keras.layers import Dense

from keras.layers import Flatten

from keras.optimizers import SGD

# load train and test dataset
def load_dataset():
# load dataset
(trainX, trainY), (testX, testY) = fashion_mnist.load_data()
# reshape dataset to have a single channel
trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))
testX = testX.reshape((testX.shape[0], 28, 28, 1))
# one hot encode target values
trainY = to_categorical (trainY)
testY = to_categorical(testY)
return trainX, trainY, testX, testY

# scale pixels

def prep_pixels(train, test):
# convert from integers to floats
train_norm = train.astype('float32')
test_norm = test.astype('float32')
# normalize to range 0-1
train_norm = train_norm / 255.0
test_norm = test_norm / 255.0
# return normalized images
return train_norm, test_norm

# define cnn model
def define_model():
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', activation='relu',
kernel_initializer='he_uniform', input_shape=(28, 28, 1)))
model . add (MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense (100, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(10, activation='softmax'))
# compile model
opt = SGD(1r=0.01, momentum=0.9)
model.compile (optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
return model




19.5. How to Develop an Improved Model

# evaluate a model using k-fold cross-validation
def evaluate_model(dataX, data¥Y, n_folds=5):
scores, histories = list(), 1list()
# prepare cross validation

kfold = KFold(n_folds, shuffle=True, random_state=1)

# enumerate splits

for train_ix, test_ix in kfold.split(dataX):
# define model
model = define_model()
# select rows for train and test

trainX, trainY, testX, testY = dataX[train_ix], dataY[train_ix], dataX[test_ix],

dataY[test_ix]
# fit model

history = model.fit(trainX, trainY, epochs=10, batch_size=32, validation_data=(testX,

testY), verbose=0)
# evaluate model
_, acc = model.evaluate(testX, testY, verbose=0)
print('> %.3f" % (acc * 100.0))
# append scores
scores.append (acc)
histories.append(history)
return scores, histories

# plot diagnostic learning curves
def summarize_diagnostics(histories):
for i in range(len(histories)):
# plot loss
pyplot.subplot(211)
pyplot.title('Cross Entropy Loss')

pyplot.plot(histories[i] .history['loss'], color='blue', label='train')
pyplot.plot(histories[i] .history['val_loss'], color='orange', label='test')

# plot accuracy
pyplot.subplot (212)
pyplot.title('Classification Accuracy')

pyplot.plot(histories[i] .history['acc'], color='blue', label='train')
pyplot.plot(histories[i] .history['val_acc'], color='orange', label='test')

pyplot.show()

# summarize model performance
def summarize_performance(scores):
# print summary

print('Accuracy: mean=%.3f std=),.3f, n=/d' % (mean(scores)*100, std(scores)*100,

len(scores)))
# box and whisker plots of results
pyplot.boxplot(scores)
pyplot.show()

# run the test harness for evaluating a model
def run_test_harness():
# load dataset
trainX, trainY, testX, testY = load_dataset()
# prepare pixel data
trainX, testX = prep_pixels(trainX, testX)
# evaluate model

scores, histories = evaluate_model (trainX, trainY)

221




19.5. How to Develop an Improved Model 222

# learning curves
summarize_diagnostics(histories)
# summarize estimated performance
summarize_performance (scores)

# entry point, run the test harness
run_test_harness()

Listing 19.19: Example of evaluating the baseline model with padded convolutional layers.

Running the example again reports model performance for each fold of the cross-validation
process.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see perhaps a small improvement in model performance as compared to
the baseline across the cross-validation folds.

90.875
91.442
91.242
91.275
91.450

V V V VvV V

Listing 19.20: Example output from during the evaluation of each model.

A plot of the learning curves is created. As with the baseline model, we may see some slight
overfitting. This could be addressed perhaps with use of regularization or the training for fewer
epochs.




19.5. How to Develop an Improved Model 223

Cross Entropy Loss

0.4

0.3+

0.2

0.1 -

Classification Accurdcy 8

o
N A

0.950 A
0.925 ~
0.900 -
0.875 A
0.850 A

0.825 -

Figure 19.4: Loss and Accuracy Learning Curves for the Same Padding on the Fashion-MNIST
Dataset During k-Fold Cross-Validation.

Next, the estimated performance of the model is presented, showing performance with a very
slight increase in the mean accuracy of the model, 91.257% as compared to 91.187% with the
baseline model. This may or may not be a real effect as it is within the bounds of the standard
deviation. Perhaps more repeats of the experiment could tease out this fact.

Accuracy: mean=91.257 std=0.209, n=5

Listing 19.21: Example output from the final evaluation of the model.




19.5. How to Develop an Improved Model 224

0.914 ~

0.913 -

0.912 ~

0.911 -

0.910 A

0.909 -
@)
1

Figure 19.5: Box and Whisker Plot of Accuracy Scores for Same Padding on the Fashion-MNIST
Dataset Evaluated Using k-Fold Cross-Validation.

19.5.2 Increasing Filters

An increase in the number of filters used in the convolutional layer can often improve performance,
as it can provide more opportunity for extracting simple features from the input images. This is
especially relevant when very small filters are used, such as 3 x 3 pixels. In this change, we can
increase the number of filters in the convolutional layer from 32 to double that at 64. We will
also build upon the possible improvement offered by using ‘same’ padding.

model.add(Conv2D(64, (3, 3), padding='same', activation='relu',
kernel_initializer='he_uniform', input_shape=(28, 28, 1)))

Listing 19.22: Example of increasing the number of filters.

The full code listing including the change to padding is provided below for completeness.

# model with double the filters for the fashion mnist dataset
from numpy import mean

from numpy import std

from matplotlib import pyplot

from sklearn.model_selection import KFold

from keras.datasets import fashion_mnist




19.5. How to Develop an Improved Model 225

from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D

from keras.layers import MaxPooling2D
from keras.layers import Dense

from keras.layers import Flatten

from keras.optimizers import SGD

# load train and test dataset
def load_dataset():
# load dataset
(trainX, trainY), (testX, testY) = fashion_mnist.load_data()
# reshape dataset to have a single channel
trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))
testX = testX.reshape((testX.shape[0], 28, 28, 1))
# one hot encode target values
trainY = to_categorical(trainY)
testY = to_categorical(testY)
return trainX, trainY, testX, testY

# scale pixels

def prep_pixels(train, test):
# convert from integers to floats
train_norm = train.astype('float32')
test_norm = test.astype('float32')
# normalize to range 0-1
train_norm = train_norm / 255.0
test_norm = test_norm / 255.0
# return normalized images
return train_norm, test_norm

# define cnn model
def define_model():
model = Sequential()
model.add(Conv2D(64, (3, 3), padding='same', activation='relu’,
kernel_initializer='he_uniform', input_shape=(28, 28, 1)))
model .add (MaxPooling2D((2, 2)))
model.add(Flatten())
model .add(Dense (100, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense (10, activation='softmax'))
# compile model
opt = SGD(1r=0.01, momentum=0.9)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
return model

# evaluate a model using k-fold cross-validation
def evaluate_model(dataX, dataY, n_folds=5):
scores, histories = list(), 1list()
# prepare cross validation
kfold = KFold(n_folds, shuffle=True, random_state=1)
# enumerate splits
for train_ix, test_ix in kfold.split(dataX):
# define model
model = define_model()
# select rows for train and test
trainX, trainY, testX, testY = dataX[train_ix], dataY[train_ix], dataX[test_ix],




19.5. How to Develop an Improved Model 226

dataY[test_ix]

# fit model

history = model.fit(trainX, trainY, epochs=10, batch_size=32, validation_data=(testX,
testY), verbose=0)

# evaluate model

_, acc = model.evaluate(testX, testY, verbose=0)

print('> %.3f' % (acc * 100.0))

# append scores

scores.append (acc)

histories.append(history)

return scores, histories

# plot diagnostic learning curves
def summarize_diagnostics(histories):
for i in range(len(histories)):
# plot loss
pyplot.subplot(211)
pyplot.title('Cross Entropy Loss')
pyplot.plot(histories[i] .history['loss'], color='blue', label='train')
pyplot.plot(histories[i] .history['val_loss'], color='orange', label='test')
# plot accuracy
pyplot.subplot(212)
pyplot.title('Classification Accuracy')
pyplot.plot(histories[i] .history['acc'], color='blue', label='train')
pyplot.plot(histories[i] .history['val_acc'], color='orange', label='test')
pyplot.show()

# summarize model performance
def summarize_performance(scores):
# print summary
print('Accuracy: mean=%.3f std=%.3f, n=Vd' % (mean(scores)*100, std(scores)*100,
len(scores)))
# box and whisker plots of results
pyplot.boxplot(scores)
pyplot.show()

# run the test harness for evaluating a model
def run_test_harness():
# load dataset
trainX, trainY, testX, testY = load_dataset()
# prepare pixel data
trainX, testX = prep_pixels(trainX, testX)
# evaluate model
scores, histories = evaluate_model(trainX, trainY)
# learning curves
summarize_diagnostics(histories)
# summarize estimated performance
summarize_performance(scores)

# entry point, run the test harness
run_test_harness()

Listing 19.23: Example of evaluating the baseline model with padded convolutional layers and
more filters.

Running the example reports model performance for each fold of the cross-validation process.




19.5. How to Develop an Improved Model 227

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, the per-fold scores may suggest some further improvement over the baseline
and using same padding alone.

90.917
90.908
90.175
91.158
91.408

V V V Vv VvV

Listing 19.24: Example output from during the evaluation of each model.

A plot of the learning curves is created, in this case showing that the models still have a
reasonable fit on the problem, with a small sign of some of the runs overfitting.

Cross Entropy Loss

0.5 -
0.4 1 \
0.3 - N
0.2 1

0.1+

0 2 Classifichtion Accurdcy 8

0.95 ~

0.90 ~

0.85 A

o A
N
N
[(@)]
co

Figure 19.6: Loss and Accuracy Learning Curves for the More Filters and Padding on the
Fashion-MNIST Dataset During k-Fold Cross-Validation.

Next, the estimated performance of the model is presented, showing a possible decrease in
performance as compared to the baseline with padding from 90.913% to 91.257%. Again, the
change is still within the bounds of the standard deviation, and it is not clear whether the effect
is real.




19.6. How to Finalize the Model and Make Predictions 228

Accuracy: mean=90.913 std=0.412, n=5

Listing 19.25: Example output from the final evaluation of the model.

19.6 How to Finalize the Model and Make Predictions

The process of model improvement may continue for as long as we have ideas and the time
and resources to test them out. At some point, a final model configuration must be chosen and
adopted. In this case, we will keep things simple and use the baseline model as the final model.
First, we will finalize our model, by fitting a model on the entire training dataset and saving
the model to file for later use. We will then load the model and evaluate its performance on the
hold out test dataset, to get an idea of how well the chosen model actually performs in practice.
Finally, we will use the saved model to make a prediction on a single image.

19.6.1 Save Final Model

A final model is typically fit on all available data, such as the combination of all train and test
dataset. In this tutorial, we are intentionally holding back a test dataset so that we can estimate
the performance of the final model, which can be a good idea in practice. As such, we will fit
our model on the training dataset only.

# fit model
model.fit(trainX, trainY, epochs=10, batch_size=32, verbose=0)

Listing 19.26: Example of fitting the final model.

Once fit, we can save the final model to an hb file by calling the save() function on the
model and passing in the chosen filename.

# save model
model.save('final_model.h5")

Listing 19.27: Example of saving the final model.

Note: saving and loading a Keras model requires that the h5py library is installed on your
workstation. The complete example of fitting the final model on the training dataset and saving
it to file is listed below.

# save the final model to file

from keras.datasets import fashion_mnist
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D

from keras.layers import MaxPooling2D
from keras.layers import Dense

from keras.layers import Flatten

from keras.optimizers import SGD

# load train and test dataset
def load_dataset():




19.6. How to Finalize the Model and Make Predictions 229

# load dataset

(trainX, trainY), (testX, testY) = fashion_mnist.load_data()
# reshape dataset to have a single channel

trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))

testX = testX.reshape((testX.shapel[0O], 28, 28, 1))

# one hot encode target values

trainY = to_categorical(trainY)

testY = to_categorical(testY)

return trainX, trainY, testX, testY

# scale pixels

def prep_pixels(train, test):
# convert from integers to floats
train_norm = train.astype('float32')
test_norm = test.astype('float32')
# normalize to range 0-1
train_norm = train_norm / 255.0
test_norm = test_norm / 255.0
# return normalized images
return train_norm, test_norm

# define cnn model
def define_model():
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform',
input_shape=(28, 28, 1)))
model.add (MaxPooling2D((2, 2)))
model .add(Flatten())
model.add(Dense (100, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense (10, activation='softmax'))
# compile model
opt = SGD(1r=0.01, momentum=0.9)
model.compile (optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
return model

# run the test harness for evaluating a model
def run_test_harness():
# load dataset
trainX, trainY, testX, testY = load_dataset()
# prepare pixel data
trainX, testX = prep_pixels(trainX, testX)
# define model
model = define_model()
# fit model
model.fit(trainX, trainY, epochs=10, batch_size=32, verbose=0)
# save model
model.save('final_model.h5')

# entry point, run the test harness
run_test_harness()

Listing 19.28: Example of fitting and saving the final model.

After running this example, you will now have a 4.2-megabyte file with the name final model.h5
in your current working directory.



19.6. How to Finalize the Model and Make Predictions 230

19.6.2 Evaluate Final Model

We can now load the final model and evaluate it on the hold out test dataset. This is something
we might do if we were interested in presenting the performance of the chosen model to project
stakeholders. The model can be loaded via the load_model () function. The complete example
of loading the saved model and evaluating it on the test dataset is listed below.

# evaluate the deep model on the test dataset
from keras.datasets import fashion_mnist

from keras.models import load_model

from keras.utils import to_categorical

# load train and test dataset
def load_dataset():
# load dataset
(trainX, trainY), (testX, testY) = fashion_mnist.load_data()
# reshape dataset to have a single channel
trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))
testX = testX.reshape((testX.shapel[0], 28, 28, 1))
# one hot encode target values
trainY = to_categorical(trainY)
testY = to_categorical (testY)
return trainX, trainY, testX, testY

# scale pixels

def prep_pixels(train, test):
# convert from integers to floats
train_norm = train.astype('float32')
test_norm = test.astype('float32')
# normalize to range 0-1
train_norm = train_norm / 255.0
test_norm = test_norm / 255.0
# return normalized images
return train_norm, test_norm

# run the test harness for evaluating a model
def run_test_harness():
# load dataset
trainX, trainY, testX, testY = load_dataset()
# prepare pixel data
trainX, testX = prep_pixels(trainX, testX)
# load model
model = load_model('final_model.h5')
# evaluate model on test dataset
_, acc = model.evaluate(testX, testY, verbose=0)
print('> %.3f"' % (acc * 100.0))

# entry point, run the test harness
run_test_harness()

Listing 19.29: Example of loading and evaluating the final model.

Running the example loads the saved model and evaluates the model on the hold out test
dataset. The classification accuracy for the model on the test dataset is calculated and printed.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.




19.6. How to Finalize the Model and Make Predictions 231

Consider running the example a few times and compare the average performance.

In this case, we can see that the model achieved an accuracy of 90.990%, or just less than
10% classification error, which is not bad.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

> 90.990

Listing 19.30: Example output from loading and evaluating the final model.

19.6.3 Make Prediction

We can use our saved model to make a prediction on new images. The model assumes that new
images are grayscale, they have been segmented so that one image contains one centered piece
of clothing on a black background, and that the size of the image is square with the size 28 x 28
pixels. Below is an image extracted from the MNIST test dataset.

Figure 19.7: Sample Clothing (Pullover).

You can save it in your current working directory with the filename sample_image . png.
e Download Image (sample image.png).'

We will pretend this is an entirely new and unseen image, prepared in the required way, and
see how we might use our saved model to predict the integer that the image represents. For
this example, we expect class 2 for Pullover (also called a jumper). First, we can load the
image, force it to be grayscale format, and force the size to be 28 x 28 pixels. The loaded image

'https://machinelearningmastery.com/wp-content/uploads/2019/05/sample_image.png




19.6. How to Finalize the Model and Make Predictions 232

can then be resized to have a single channel and represent a single sample in a dataset. The
load_image () function implements this and will return the loaded image ready for classification.
Importantly, the pixel values are prepared in the same way as the pixel values were prepared for
the training dataset when fitting the final model, in this case, normalized.

# load and prepare the image
def load_image(filename):
# load the image
img = load_img(filename, grayscale=True, target_size=(28, 28))
# convert to array
img = img_to_array(img)
# reshape into a single sample with 1 channel
img = img.reshape(l, 28, 28, 1)
# prepare pixel data
img = img.astype('float32')
img = img / 255.0
return img

Listing 19.31: Example of a function for loading and preparing an image for prediction.

Next, we can load the model as in the previous section and call the predict_classes()
function to predict the clothing in the image.

# predict the class
result = model.predict_classes(img)

Listing 19.32: Example of making a prediction with a prepared image.

The complete example is listed below.

# make a prediction for a new image.

from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.models import load_model

# load and prepare the image
def load_image(filename):
# load the image
img = load_img(filename, grayscale=True, target_size=(28, 28))
# convert to array
img = img_to_array(img)
# reshape into a single sample with 1 channel
img = img.reshape(l, 28, 28, 1)
# prepare pixel data
img = img.astype('float32')
img = img / 255.0
return img

# load an image and predict the class
def run_example():
# load the image
img = load_image('sample_image.png')
# load model
model = load_model('final_model.h5')
# predict the class
result = model.predict_classes(img)




19.7. Extensions 233

print (result[0])

# entry point, run the example
run_example ()

Listing 19.33: Example of loading and making a prediction with the final model.

Running the example first loads and prepares the image, loads the model, and then correctly
predicts that the loaded image represents a pullover or class 2.

2

Listing 19.34: Example output from loading and making a prediction with the final model.

19.7 Extensions
This section lists some ideas for extending the tutorial that you may wish to explore.

e Regularization. Explore how adding regularization impacts model performance as
compared to the baseline model, such as weight decay, early stopping, and dropout.

e Tune the Learning Rate. Explore how different learning rates impact the model
performance as compared to the baseline model, such as 0.001 and 0.0001.

e Tune Model Depth. Explore how adding more layers to the model impacts the model
performance as compared to the baseline model, such as another block of convolutional
and pooling layers or another dense layer in the classifier part of the model.

If you explore any of these extensions, I'd love to know.

19.8 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

19.8.1 APIs

e Keras Datasets API.
https://keras.io/datasets/

e Keras Datasets Code.
https://github.com/keras-team/keras/tree/master/keras/datasets

e sklearn.model selection.KFold API.
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.
html

19.8.2 Articles

e Fashion-MNIST GitHub Repository.
https://github.com/zalandoresearch/fashion-mnist



