
UNIT IV - TEMPLATES AND 
EXCEPTION HANDLING

• Topics to be discussed,

Function Template and Class Template

Namespaces

Casting

Exception Handling

14-May-24 1
BVL_Kalam Computing Centre, MIT 

Campus, Anna university



Exception Handling

• What is Exception?

– The errors that occur at run-time are known as 
exceptions.

– An exception is an unexpected problem that arises 
during the execution of a program our program 
terminates suddenly with some errors/issues.

– Types of C++ Exception

• There are two types of exceptions in C++
– Synchronous

– Asynchronous

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
2



Exception Handling – Cont’d

• Synchronous:
– Exceptions that happen when something goes wrong 

because of a mistake in the input data or when the 
program is not equipped to handle the current type of 
data it’s working with

– For example, they occur due to different conditions 
such as division by zero, accessing an element out of 
bounds of an array, unable to open a file, running out 
of memory and many more.

• Asynchronous: 
– Exceptions that are beyond the program’s control, such 

as disc failure, keyboard interrupts, etc.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
3



Exception Handling – Cont’d
• Exception Handling in C++ is a process to handle runtime 

errors. 
• If we don't handle the exception, it prints exception 

message and terminates the program.
• The main objective of exception handling is to provide a 

way to detect and report the exception condition so that 
necessary action can be taken without troubling the user.

• We perform exception handling so the normal flow of the 
application can be maintained even after runtime errors.

• In C++, exception handling is designed to handle only 
synchronized exceptions.

• In C++, exception is an event or object which is thrown at 
runtime. 

• All exceptions are derived from std::exception class.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
4



14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
5

Exception - Example

Output:



Exception Handling – Cont’d
• Exception Handling Mechanism

– Whenever an exception occurs in a C++ program, the 
portion the program that detects the exception can 
inform that exception has occurred by throwing it

– On throwing an exception, the program control 
immediately stops the step by step execution of the 
code and jumps to the separate block of code known as 
an exception handler.

– The exception handler catches the exception and 
processes it without troubling the user. 

– However, if there is no exception handler, the program 
terminates abnormally.

– C++ provides three constructs try, throw and catch, for 
implementing exception handling.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
6



Exception Handling – Cont’d
C++ try and catch

• try
– The try keyword represents a block of code that may 

throw an exception placed inside the try block.
– It’s followed by one or more catch blocks. 
– If an exception occurs, try block throws that exception.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
7

Syntax:



Exception Handling – Cont’d
• catch

– The catch statement represents a block of code that is 
executed when a particular exception is thrown from 
the try block. 

– The code to handle the exception is written inside the 
catch block.

• throw
– An exception in C++ can be thrown using the throw 

keyword. 
– When a program encounters a throw statement, then it 

immediately terminates the current function and starts 
finding a matching catch block to handle the thrown 
exception.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
8



14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
9

Output:

Exception Handling – Example 1 



14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
10

Exception Handling – Example 2 

Output:



Exception Handling – Cont’d
• Multiple catch Statements

– In C++, we can use 
multiple catch statements for 
different kinds of exceptions 
that can result from a single 
block of code.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
11



14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
12

Multiple catch Statements – Example 1

Output:



Exception Handling – Cont’d
• Catching All Types of Exceptions

– In exception handling, it is important 
that we know the types of exceptions 
that can occur due to the code in 
our try statement.

– This is so that we can use the 
appropriate catch parameters.

– Otherwise, the try...catch statements 
might not work properly.

– If we do not know the types of 
exceptions that can occur in 
our try block, then we can use the 
ellipsis symbol ... as 
our catch parameter.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
13



Exception Handling – Cont’d
• Our program catches exception1 if that 

exception occurs.
• If not, it will catch exception2 if it occurs.
• If there is an error that is neither 

exception1 nor exception2, then the code 
inside of catch (...) {} is executed.

• Note:
• catch (...) {} should always be the final 

block in our try...catch statement. 
• This is because this block catches all 

possible exceptions and acts as the default 
catch block

• It is not compulsory to include the default 
catch block in our code.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
14



14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
15

Multiple catch Statements - Example



14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
16

Output:



Exception Handling – Cont’d
Throwing Exceptions from C++ constructors

• An exception should be thrown from a C++ constructor 
whenever an object cannot be properly constructed or 
initialized. 

• Since there is no way to recover from failed object 
construction, an exception should be thrown in such cases. 

• Since C++ constructors do not have a return type, it is not 
possible to use return codes. 

• Therefore, the best practice is for constructors to throw an 
exception to signal failure. 

• The throw statement can be used to throw a C++ exception 
and exit the constructor code.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
17



14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
18

Throwing Exceptions from C++ constructors - Example

Output:



Exception Handling – Cont’d
• Implicit type conversion doesn’t happen for primitive 

types.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
19

Output:



Exception Handling – Cont’d
• If an exception is thrown and not caught anywhere, the 

program terminates abnormally.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
20

Output:



Exception Handling – Cont’d
C++ Standard Exception

• In C++ standard 
exceptions are defined 
in <exception> class 
that we can use inside 
our programs. 

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
21



Exception Handling – Cont’d
C++ Standard Exceptions

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
22

• std::exception - Parent class of all the standard 
C++ exceptions.

• logic_error - Exception happens in the internal 
logical of a program.
– domain_error - Exception due to use of invalid 

domain.

– invalid argument - Exception due to invalid 
argument.

– out_of_range - Exception due to out of range i.e. 
size requirement exceeds allocation.

– length_error - Exception due to length error.



Exception Handling – Cont’d
C++ Standard Exceptions

• runtime_error - Exception happens during runtime.
– range_error - Exception due to range errors in internal 

computations.
– overflow_error - Exception due to arithmetic overflow 

errors.
– underflow_error - Exception due to arithmetic underflow 

errors

• bad_alloc - Exception happens when memory allocation 
with new() fails.

• bad_cast - Exception happens when dynamic cast fails.
• bad_exception - Exception is specially designed to be 

listed in the dynamic-exception-specifier.
• bad_typeid - Exception thrown by typeid.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
23



14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
24

Standard Exception Example 1

Output 1:

Output 2:



14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
25

Standard Exception Example 2

Output:



Exception Handling – Cont’d
re-throwing an Exception

• Re-throwing an exception in C++ involves catching 
an exception within a try block and instead of 
dealing with it locally, throwing it again to be 
caught by an outer catch block. 

• By doing this, we preserve the type and details of 
the exception ensuring that it can be handled at 
the appropriate level within our program.

• This approach becomes particularly valuable 
when managing exceptions at multiple levels or 
when additional actions need to be performed 
before resolving the exception.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
26



14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
27

re-throwing an Exception - Example

Output 1:
Output 2:



Exception Handling – Cont’d
• In C++, try/catch blocks can be nested. 
• Also, an exception can be re-thrown using “throw; “.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
28

Output:



Exception Handling – Cont’d
• When an exception is thrown, all objects created inside the enclosing try 

block are destroyed before the control is transferred to the catch block.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
29

Output:



Exception Handling – Cont’d
User-Defined Exceptions

• The C++ std::exception class allows us to define 
objects that can be thrown as exceptions. 

• This class has been defined in the <exception> 
header. 

• The class provides us with a virtual member 
function named what.

• This function returns a null-terminated character 
sequence of type char *. 

• We can overwrite it in derived classes to have an 
exception description.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
30



14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
31

User-Defined Exceptions - Example

Output:



Exception Handling – Cont’d
• How to make the function throws something in C++?

– when a function is throwing, we can declare that this 
function throws something.

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
32

For example,

• This Division function declares that it throws some exception 

i.e. MyException.

• This is optional in C++. 
• Whether we want to write or not is up to us.



Exception Handling – Cont’d
• So, whatever the type of value we are throwing, we can 

mention that in the brackets
• And if there are more values then we can mention them with 

commas

14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
33



14-May-24
BVL_Kalam Computing Centre, MIT 

Campus, Anna university
34

function throws something - Example 

Output:


