UNIT IV - TEMPLATES AND
EXCEPTION HANDLING

* Topics to be discussed,

» Exception Handling

Campus, Anna university

Exception Handling

* What is Exception?

— The errors that occur at run-time are known as
exceptions.

— An exception is an unexpected problem that arises
during the execution of a program our program
terminates suddenly with some errors/issues.

— Types of C++ Exception

* There are two types of exceptions in C++
— Synchronous
— Asynchronous

BVL_Kalam Computing Centre, MIT

14-May-24 . .
y Campus, Anna university

Exception Handling — Cont’d

* Synchronous:

— Exceptions that happen when something goes wrong
because of a mistake in the input data or when the
program is not equipped to handle the current type of
data it’s working with

— For example, they occur due to different conditions
such as division by zero, accessing an element out of
bounds of an array, unable to open a file, running out
of memory and many more.

* Asynchronous:

— Exceptions that are beyond the program’s control, such
as disc failure, keyboard interrupts, etc.

BVL_Kalam Computing Centre, MIT

14-May-24 . .
ay Campus, Anna university

Exception Handling — Cont’d

Exception Handling in C++ is a process to handle runtime
errors.

If we don't handle the exception, it prints exception
message and terminates the program.

The main objective of exception handling is to provide a
way to detect and report the exception condition so that
necessary action can be taken without troubling the user.

We perform exception handling so the normal flow of the
application can be maintained even after runtime errors.

In C++, exception handling is designed to handle only
synchronized exceptions.

In C++, exception is an event or object which is thrown at
runtime.

All exceptions are derived from std::exception class.

BVL_Kal [MIT
14-May-24 _Kalam Computmg.Cent're,)
Campus, Anna university

include<iostream:>
using namespace std;
int main()

Exception - Example

intnl,n2;
float res;
char ch;
while(true)
cout<<"\nEnter 2 numbers:";
cin>>nl1>>n2;
res=nl/n2;
cout<<"res="<<res;
<<" A inue? !
E'.:'Ut \nDo you want to continue?(y/n)"; Output:
cin>>ch;
if[Eh|=] Enter 2 numbers:45 6
' res=/
hI'EEIk,' Do you want to continue?(y/n)y
:
]
1 Enter 2 numbers:23 2
J res=11

Do you want to continue?(y/n)y

Enter 2 numbers:12 ©

Process returned -1073741676 (
any k

Press

ey to continue.

Exception Handling — Cont’d

* Exception Handling Mechanism

— Whenever an exception occurs in a C++ program, the
portion the program that detects the exception can
inform that exception has occurred by throwing it

— On throwing an exception, the program control
immediately stops the step by step execution of the
code and jumps to the separate block of code known as
an exception handler.

— The exception handler catches the exception and
processes it without troubling the user.

— However, if there is no exception handler, the program
terminates abnormally.

— C++ provides three constructs try, throw and catch, for
implementing exception handling.

BVL_Kalam Computing Centre, MIT

14-May-24 . .
y Campus, Anna university

Exception Handling — Cont’d

Syntax: C++ try and catch
try
{

throw SomeExceptionType("Error message");

j

catch(ExceptionName el)

1

j
° try
— The try keyword represents a block of code that may
throw an exception placed inside the try block.
— It’s followed by one or more catch blocks.

— If an exception occurs, try block throws that exception.

BVL_Kalam Computing Centre, MIT

14-May-24 : ;
ay Campus, Anna university

Exception Handling — Cont’d

e catch

— The catch statement represents a block of code that is
executed when a particular exception is thrown from
the try block.

— The code to handle the exception is written inside the
catch block.

 throw

— An exception in C++ can be thrown using the throw
keyword.

— When a program encounters a throw statement, then it
immediately terminates the current function and starts
finding a matching catch block to handle the thrown
exception.

BVL_Kalam Computing Centre, MIT

14-May-24 . .
y Campus, Anna university

sinclude <iostreams EXCeption Handling — Example 1

using namespace std;

int main()
{
intx=-1;
cout << "Before try \n";
try
{
cout << "Inside try \n";
if (x < 0)
{
throw x;
cout << "After throw (Never executed) \n";
}
}
Output:
catch (int x) P
{ Before try
cout << "Exception Caught \n"; Inside try
xception Caught
} Exception Caugl
cout << "After Caught (Will be executed) \n": After Caught (Will be executed)
return O;
14-May-24 BVL_Kalam Computing Centre, MIT 9

Campus, Anna university

#include<iostream> — Eycaption Handling — Example 2
using namespace Stdl.)

int main() if(ch!=")
{ break;
int nl,n2;)
float res; catch(int exp)
char ch; {
while(true) ! o !
{ cout<<"Error:cannot divide by "<<exp;
cout<<"\nEnter 2 numbers:"; }
cin>>nl1>>n2; }
try],
{
i ::I.-'
it (n2==0) Output:
throw 0;
res=static_cast<float>(n1)/n2;
cout<<"res="<<res; E5=0- /0 - nue? (v
y : Mo you want to continue?(y/n)y
cout<<"\nDo you want to continue?(y/n)"; you wen comtnmesty/my
Chﬁ}}ch; Enter 2 numbers:4 @

[Frror:cannot divide by @
Enter Z numbers:34 5
res=6.8

)o you want to continue?(y/n)n

s returned @ (8x@) execution time :
ress any key to continue.

‘roces

Exception Handling — Cont’d

* Multiple catch Statements

try
{

}
catch (exceptionl)
{
}
catch (exception2)

{
}

14-May-24

— In C++, we ca
multiple catc
different kind

n use
n statements for
s of exceptions

that can resu
block of code

BVL_Kalam Computing Centre, MIT
Campus, Anna university

t from a single

11

#include <stdexcept> Multiple catch Statements — Example 1
using namespace std;

intx=>5;
int main()
{
try
{
if (x ==0)
throw x;
else if (x > 0)
throw «';
else
throw "x is negative";

}
catch (int i)
{

cout << "Caught an int exception: " <<i << endl;

}
catch (char ¢)

{

cout << "Caught a char exception: " << ¢ << endl; Caught a char

}
catch (char* str)

{

cout << "Caught a string exception: " << str << endl;

} ntre, MIT
} rsity

12

Exception Handling — Cont’d

e Catching All Types of Exceptions

try — In exception handling, it is important

that we know the types of exceptions
{ that can occur due to the code in

our try statement.

— This is so that we can use the

} appropriate catch parameters.
catch II} — Otherwise, the try...catch statements
{ might not work properly.

— |f we do not know the types of
exceptions that can occur in
} our try block, then we can use the
ellipsis symbol ... as
our catch parameter.

BVL_Kalam Computing Centre, MIT

14-May-24 . .
ay Campus, Anna university

13

Exceptlon Handling — Cont’d

try
{

}
catch (exceptionl)

{
}

catch (exception2)

14-May-24

Our program catches exceptionl if that
exception occurs.

If not, it will catch exception?2 if it occurs.

If there is an error that is neither
exceptionl nor exception2, then the code
inside of catch (...) {} is executed.

Note:

catch (...) {} should always be the final
block in our try...catch statement.

This is because this block catches all
possible exceptions and acts as the default
catch block

It is not compulsory to include the default
catch block in our code.

BVL_Kalam Computing Centre, MIT

14
Campus, Anna university

Multiple catch Statements - Example

#Hinclude<iostream>
using namespace std;
int main()

{

int indl,ind2;
int arr[5]={45,34,78,0,22};
float res;
char ch:
while(true)
{
cout<<"\nEnter 2 index numbers:";
cin>>ind1l>=ind2;
try
{
if (ind1>4 || ind2>4)
throw "Error:Array index out of bounds”;
if(arr[ind2]==0)
throw 0;

res=static_cast<float>(arr[ind1])/arr[ind2];
cout<<"res="<<res;

BVL_Kalam Computing Centre, MIT

14-May-24 : ;
ay Campus, Anna university

15

S

e

cout<<"\nDo you want to continue?(y/n)";

cin>>ch:
if(ch!="/)
break;

1
I

catch(const char® emsg)

{

cout<<emsg;

1
I

catch(int exp)

{

cout<<"Error:cannot divide by "<<exp;

1
I

catch (...)

{

Output:

Enter 2 index numbers:2 @
res=1.73333
Do you want to continue?(y/n)y

Enter 2 index numbers:1 3
Error:cannot divide by @
Enter 2 index numbers:4 1
res=@_647059

Do you want to continue?(y/n)y

Enter 2 index numbers:1 5
Error:Array index out of bounds
Enter 2 index numbers:1 4
res=1.54545

Do you want to continue?(y/n)n
Process returned & (0x0) execution time :
Press any key to continue.

cout << "Unexpected exception!” << end|;

S|

79.818 s

Exception Handling — Cont’d
Throwing Exceptions from C++ constructors

An exception should be thrown from a C++ constructor
whenever an object cannot be properly constructed or
initialized.

Since there is no way to recover from failed object
construction, an exception should be thrown in such cases.

Since C++ constructors do not have a return type, it is not
possible to use return codes.

Therefore, the best practice is for constructors to throw an
exception to signal failure.

The throw statement can be used to throw a C++ exception
and exit the constructor code.

VL_Kal [MIT
14-May-24 BVL_Kalam Computlng.Cent're, .
Campus, Anna university

Throwing Exceptions from C++ constructors - Example

#include <iostream>

. int main()
using namespace std; {
class Rectangle
{ try
private: {
int length; Rectangle r1(10, -5);
int breadth; r1.Display();
public: }
Rectangle(int |, int b) catch (int num)
{ {
;f (1<0 || b<0) cout << "Rectangle Object Creation Failed";
throw 1;)
}
}
else
{ Output:
length = 1; Rectangle Object Creation Failed
breadth = b;
}
}
void Display()
{
cout << "Length: " << length << " Breadth: " << breadth;
}
7
14-May-24 BVL_Kalam Computing Centre, MIT 18

Campus, Anna university

Exception Handling — Cont’d

* Implicit type conversion doesn’t happen for primitive
types.

#include <iostream>
using namespace std;
int main()
{

try

{

throw = ;

}

catch (int x)

{ .
Default Exception
}

catch (...)
{

cout << "Default Exception\n";

}

return O;

} Kalam Computing Centre, MIT
) Campus, Anna university

Output:

Exception Handling — Cont’d

* |f an exception is thrown and not caught anywhere, the
program terminates abnormally.

#include <iostream>
using namespace std;
int main()
{

try

{

throw a';

}

catch (int x)

{

cout << "Exception Caught ";

}
return O; Output:

} terminate called after throwing an instance of 'char’

BVL_Kalam Computing Centre, MIT

14-May-24 . .
y Campus, Anna university

20

Exception Handling — Cont’d
C++ Standard Exception

3 std:exception

 |n C++ standard

— std:bad_alloc

— std:bad cast

— std:bad_typeid

— std:bad_exception

— std:logic_failure

— std:runtime_error

14-May-24

lgf—

-—

s domain_eror exceptions are defined

in <exception> class
that we can use inside
our programs.

std:length_error

std:out_of range

std:overflow_error

std:range_error

std:underflow_error

BVL_Kalam Computing Centre, MIT

21
Campus, Anna university

Exception Handling — Cont’d

C++ Standard Exceptions
e std::exception - Parent class of all the standard

C++ exceptions.

* logic_error - Exception happens in the internal
logical of a program.

— domain_error - Exception due to use of invalid
domain.

— invalid argument - Exception due to invalid
argument.

— out_of range - Exception due to out of range i.e.
size requirement exceeds allocation.

— length_error - Exception due to length error.

BVL_Kal [MIT
14-May-24 _Kalam Computing Centre,

22
Campus, Anna university

Exception Handling — Cont’d

C++ Standard Exceptions

runtime_error - Exception happens during runtime.

— range_error - Exception due to range errors in internal
computations.

— overflow_error - Exception due to arithmetic overflow
errors.

— underflow_error - Exception due to arithmetic underflow
errors

bad_alloc - Exception happens when memory allocation
with new() fails.

bad_cast - Exception happens when dynamic cast fails.

bad_exception - Exception is specially designed to be
listed in the dynamic-exception-specifier.

bad_typeid - Exception thrown by typeid.

BVL_Kalam Computing Centre, MIT

. . 23
Campus, Anna university

14-May-24

| | Standard Exception Example 1
#include <iostream>

using namespace std;

int main()
{ Output 1:
try
{ Enter two numbers: 24 2
int num1, num2; Result: 12

cout << "Enter two numbers: "
cin >> num1 >> num2;

if (num2 ==0)
{
throw runtime_error("Divide by zero exception”);

g)nt result = num1 / num?2; Output 2:

cout << "Result: " << result <<endl; Enter two numbers: 23 @
} Exception caught: Divide by zero exception
catch (const exception& e)
{

cout << "Exception caught: " << e.what() << std::endl;
}
return O;

}
14-May-24 BVL_Kalam Computing Centre, MIT 24

Campus, Anna university

#include<iostream>
#include <stdexcept>
using namespace std;
int divide(int a, int b)
{

if (b ==0)

{

throw invalid_argument("division by zero");

}

returna / b;

} :
int main() Output:

{ An exceptlon occurred: division by zero
try
{
int result = divide(1, 0);
cout << result << end|;

}

catch (const invalid_argument& e)

{

cout << "An exception occurred: " << e.what() << endl;

}

return O;

Standard Exception Example 2

dIinpus, Alllld ulnvelisivy

Exception Handling — Cont’d
re-throwing an Exception

* Re-throwing an exception in C++ involves catching
an exception within a try block and instead of
dealing with it locally, throwing it again to be
caught by an outer catch block.

* By doing this, we preserve the type and details of
the exception ensuring that it can be handled at
the appropriate level within our program.

* This approach becomes particularly valuable
when managing exceptions at multiple levels or
when additional actions need to be performed
before resolving the exception.

re-throwing an Exception - Example

#finclude <iostream> int main()
using namespace std; {
void division(int n1,int n2) int a,b;
{ cout<<"\nEnter 2 numbers:";
try cin>>a>>b;
{ try
if(n2==0) {
throw n2; division(a,b);
else }
cout<<"nl/n2="<<(float)n1/n2; catch(int)
} {
EEtCh[i“tJ cout<<"\nCaught an exception as re-throwing";
}
cout<<"\nCaught an exception as first throwing"; return O:
throw; } j
}
) Output 2:
Output 1: '

Enter 2 numbers:23 ©

Caught an exception as first throwing
Caught an exception as re-throwing

Enter 2 numbers:us5 &
nl/n2=7.5

BVL_Kalam Computing Centre, MIT

. . 27
Campus, Anna university

14-May-24

Exception Handling — Cont’d

* In C++, try/catch blocks can be nested.

e Also, an exception can be re-thrown using “throw; “
#include <iostream>

using namespace std;
int main()

{

try {
try

{

throw 20;

}

catch (int n)

{
cout << "Handle Partially\n"; Output:

throw; .
} row Handle Partially

} Handle remaining
catch (int n)

{

cout << "Handle remaining\n ";

}

return O;

}

BVL_Kal [MIT
14-May-24 _Kalam Computmg.Cent're,
Campus, Anna university

Exception Handling — Cont’d

* When an exception is thrown, all objects created inside the enclosing try
block are destroyed before the control is transferred to the catch block.

#include <iostream>
using namespace std;
class Demo
{
public:

Demol()

{

cout << "Constructor of Demo " << endl;

}

~Demo()

{
cout << "Destructor of Demo " << endl;
}
|7
int main()

{
try Output:
{

Demo obj; Constructor of Demo
throw 10;

Destructor of Demo
catch (int i) Caught 1@
{

}

cout << "Caught " << i << end];

}
}

BVL_Kalam Computing Centre, MIT

. . 29
Campus, Anna university

14-May-24

Exception Handling — Cont’d
User-Defined Exceptions

The C++ std::exception class allows us to define
objects that can be thrown as exceptions.

This class has been defined in the <exception>
header.

The class provides us with a virtual member
function named what.

This function returns a null-terminated character
sequence of type char *.

We can overwrite it in derived classes to have an
exception description.

BVL_Kalam Computing Centre, MIT

14-May-24 . .
y Campus, Anna university

30

User-Defined Exceptions - Example

#include<iostream>

. int main()
using namespace std; {
#include <exception>
F.) . i intx=10,y=0, z
class MyException:public exception try
{
. {
public: e .
char *what) z = Division (x, y);
{ cout << z << endl;
: }
t "My Custom E tion"; _
) return -V Lustomn Exception catch (MyException ME)
7 {

cout << "Division By Zero" << endl;

int Division(int a, int b) cout << ME.what () << endl:;

{ }
if (b ==0) cout << "End of the Program" << endl;
throw MyException ();) g ’
returna/b;
Output:
j P Division By Zero
My Custom Exception
End of the Program
14-May-24 BVL_Kalam Computing Centre, MIT 31

Campus, Anna university

Exception Handling — Cont’d

 How to make the function throws something in C++?

— when a function is throwing, we can declare that this

function throws something.
For example,

int Division(int a, int b)jthrow (MyException)

{

if (b ==0)
throw MyException();
returna/ b;

}

« This Division function declares that it throws some exception
l.e. MyException.

* This is optional in C++.

* Whether we want to write or not is up to us.

BVL | i
14-May-24 VL _Kalam Computlng.Cent're, MIT 37
Campus, Anna university

Exception Handling — Cont’d

So, whatever the type of value we are throwing, we can
mention that in the brackets

And if there are more values then we can mention them with
commas

int Division(int a, int b) throw (int)

{
if (b ==0)
throw 1;
returna/b;
}

int b) throw (int, MyException

return a / b;

BVL_Kal [MIT
14-May-24 _Kalam Computmg.Cent're, .
Campus, Anna university

function throws something - Example

#tinclude<iostream> int main()
using namespace std; {
#tinclude <exception> intx=10,y=1, z
class MyException:public exception try
{ {
public: z = Division (x, y);
char * what() cout << z << end|;
{ }
return "My Custom Exception"; catch (int x)
} {
b cout << "Division By Zero Error" << endl|;
int Division(int a, int b) throw (int, MyException) }
{ catch (MyException ME)
if (b ==0) {
throw 1; cout << "Division By One Error" << endl;
if (b ==1) cout << ME.what () << endl;
throw MyException(); }
returna / b; cout << "End of the Program" << end|;
})
Output:

Division By One Error
My Custom Exception

End of the Program

BVL_Kalam Computing Centre, MIT

14-May-24 . .
y Campus, Anna university

34

