
UNIT IV - TEMPLATES AND
EXCEPTION HANDLING

• Topics to be discussed,

Function Template and Class Template

Namespaces

Casting
Exception Handling

06-May-24 1
BVL_Kalam Computing Centre, MIT

Campus, Anna university

Casting
• Casting is a conversion process wherein data can be

changed from one type to another.

• C++ has two types of conversions:
– Implicit conversion: Conversions are performed automatically

by the compiler without the programmer's intervention.

– Example:
int iVariable = 10;

float fVariable = iVariable; //Assigning an int to a float will trigger a
conversion.

– Explicit conversion: Conversions are performed only when
explicitly specified by the programmer.

– Example:
int iVariable = 20;

float fVariable = (float) iVariable / 10;

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
2

Casting – Cont’d

• The functionality of these explicit conversion
operators is enough for most needs with
fundamental data types.

• However, these operators can be applied
indiscriminately on classes and pointers to
classes, which can lead to code that while being
syntactically correct can cause runtime errors.

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
3

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
4

Output:

•Traditional explicit type-
casting allows to convert
any pointer into any
other pointer type,
independently of the
types they point to.
•The subsequent call to
member result will
produce either a run-
time error or a
unexpected result.

Casting – Cont’d
• In order to control these types of conversions between classes, we have

four specific casting operators:
– dynamic_cast
– reinterpret_cast
– static_cast
– const_cast.

• Their format is to follow the new type enclosed between angle-brackets
(<>) and immediately after, the expression to be converted between
parentheses.
– dynamic_cast <new_type> (expression)
– reinterpret_cast <new_type> (expression)
– static_cast <new_type> (expression)
– const_cast <new_type> (expression)

• The traditional type-casting equivalents to these expressions would be:
– (new_type) expression
– new_type (expression)

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
5

Casting – Cont’d
• Syntax of the traditional explicit type casting:

(type) expression;

• For example, we have a floating pointing number 4.534,
and to convert an integer value, then we write as:
int num;
num = (int) 4.534; // cast into int data type
cout << num;

• When the above statements are executed, the floating-
point value will be cast into an integer data type using
the cast () operator.

• And the float value is assigned to an integer num that
truncates the decimal portion and displays only 4 as the
integer value.

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
6

Casting – Cont’d
static_cast

• The static_cast operator is the most commonly
used casting operator in C++.

• It performs compile-time type conversion and is
mainly used for explicit conversions that are
considered safe by the compiler.

• Syntax :
static_cast <dest_type> (source);
– The return value of static_cast will be of dest_type.

• The static_cast can be used to convert between
related types, such as numeric types or pointers in
the same inheritance hierarchy.

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
7

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
8

static_cast Example 1

Output:

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
9

static_cast Example 2

Output:

typeid operator in C++
• It is used where the dynamic type or runtime type information of an

object is needed.
• It is included in the <typeinfo> library.
• The typeid expression is an lvalue expression.
• Syntax:

typeid(type);
OR

typeid(expression);

• Parameters: typeid operator accepts a parameter, based on the syntax
used in the program:
– type: This parameter is passed when the runtime type information of a

variable or an object is needed. In this, there is no evaluation that needs
to be done inside type and simply the type information is to be known.

– expression: This parameter is passed when the runtime type information
of an expression is needed. In this, the expression is first evaluated. Then
the type information of the final result is then provided.

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
10

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
11

Output:

typeid operator - Example

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
12

static_cast Example 3

Output:

(Unexpected result)

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
13

static_cast for Inheritance in C++

Output:
Output:

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
14

In the previous example, we inherited the base class as public. What happens when

we inherit it as private?

Output:

Casting – Cont’d
dynamic_cast

• The dynamic_cast operator is mainly used to
perform downcasting (converting a pointer /
reference of a base class to a derived class).

• It ensures type safety by performing a runtime
check to verify the validity of the conversion.

• Syntax :

dynamic_cast <new_type> (expression);

– If the conversion is not possible, dynamic_cast returns a
null pointer (for pointer conversions) or throws a
bad_cast exception (for reference conversions).

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
15

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
16

dynamic_cast –
Example

Output:

• In this example, the first line of output is printed because the ‘bptr’ of the ‘Base’ type is
successfully cast to the ‘Derived1’ type and show() function of the Derived1 class is invoked but the
casting of the ‘Base’ type to ‘Derived2’ type is failed because ‘bptr’ points to a ‘Derived1’ object
thus, the dynamic cast fails because the typecasting is not safe.

Casting – Cont’d
const_cast

• The const_cast operator is used to modify the
const or volatile qualifier of a variable.

• It allows programmers to temporarily remove the
constancy of an object and make modifications.

• Caution must be exercised when using
const_cast, as modifying a const object can lead
to undefined behavior.

• Syntax :
const_cast <new_type> (expression);

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
17

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
18

const_cast - Example

Output:

Casting – Cont’d
reinterpret_cast

• The reinterpret_cast operator is used to convert the
pointer to any other type of pointer.

• It does not perform any check whether the pointer
converted is of the same type or not.

• Syntax:
reinterpret_cast <new_type> (expression);

• Even if they are unrelated or incompatible, it enables us
to convert a pointer of one type to a pointer of a
different type.

• Because it might result in undeclared behaviour and
system crashes if used carelessly, the reinterpret_cast
operator is sometimes regarded as the most hazardous
of the C++ type-casting operators.

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
19

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
20

reinterpret_cast - Example

Output:

Casting – Cont’d

• Note: const_cast and reinterpret_cast are
generally not recommended as they vulnerable
to different kinds of errors.

06-May-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
21

