
UNITIII
OBJECT-ORIENTED PROGRAMMING CONCEPTS

• Topics to be discussed,

Inheritance

Constructors and Destructors in Derived Classes

Polymorphism and Virtual Functions

4/29/2024 1BVL_Kalam Computing Centre, MIT Campus, Anna university

Polymorphism and Virtual Functions
• Polymorphism is one of the most important concepts of Object-

Oriented Programming (OOPs).

• We can describe the word polymorphism as an object having many
forms.

• Polymorphism is the notion that can hold up the ability of an object of a
class to show different responses.

• In other words, we can say that polymorphism is the ability of an object
to be represented in over one form.

• To understand polymorphism, we can consider a real-life example. We
can relate it to the relationship of a person with different people. A man
can be a father to someone, a husband, a boss, an employee, a son, a
brother, or can have many other relationships with various people. Here,
this man represents the object, and his relationships display the ability of
this object to be represented in many forms with totally different
characteristics.

• Polymorphism in C++ can be broadly categorized into two types :
• Compile-time Polymorphism
• Runtime Polymorphism

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 2

Polymorphism and Virtual Functions
• Compile-time Polymorphism:

• It is called early binding or static binding.
• We can implement compile-time polymorphism using function

overloading and operator overloading.
• Method/function overloading is an implementation of compile-time

polymorphism where the same name can be assigned to more than
one method or function, having different arguments or signatures
and different return types. (discussed earlier).

• Runtime Polymorphism:
• In runtime polymorphism, the compiler resolves the object at run

time and then it decides which function call should be associated
with that object.

• It is also known as dynamic or late binding polymorphism.
• This type of polymorphism is executed through virtual functions and

function overriding.
• All the methods of runtime polymorphism get invoked during the run

time.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 3

Polymorphism and Virtual Functions –Cont’d
(Function Overriding in C++)

• When a derived class or child class defines a function that
is already defined in the base class or parent class, it is
called function overriding in C++.

• The new function definition in the derived class must have
the same function name and same parameter list as in the
base class.

• Function overriding helps us achieve runtime
polymorphism and the enables programmers to perform
the specific implementation of a function already used in
the base class.

• In this scenario, the member function in the base class is
called the overridden function and the member function in
the derived class is called the overriding function. There
must be an IS-A relationship (i.e. inheritance).

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 4

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 5

Function Overriding -Example

Output:

Polymorphism and Virtual Functions –Cont’d
(Function Overriding in C++)

• In the previous example, the
function print() is declared in both
the Base and Derived classes.

• When we call the function print()
through the Derived class object,
“dobj”, the print() from the Derived
class is invoked and executed by
overriding the same function of the
Base class.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 6

Working of the Function Overriding

Principle

As we can see from this image, the Base class
function was overridden because we called
the same function through the object of the
Derived class.

Polymorphism and Virtual Functions –Cont’d
(Function Overriding in C++)
• If we call the print() function through an object of the Base

class, the function will not be overridden.
• For Example,

//Call function of Base class
Base base1;
base1.print();

• The output of the above code will be:
• print function of base class

• To access Overridden Functions in C++
• we must use the scope resolution operator, “::” to access the

overridden function.
• Another way to access the overridden function is by using the

pointer of the base class to point to an object of the derived class
and calling the function through the pointer.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 7

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 8

Output:

Polymorphism and Virtual Functions –
Cont’d

• Working of the Access of
overridden function

• Here the statement derived
1.print() accesses the print()
function of the Derived class
and the statement
derived2.Base::print()
accesses the print() function
of the Base class.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 9

Polymorphism and Virtual Functions –Cont’d

• Calling a C++ overridden
function from the derived
class

• In this code, we call the
overridden function from
within the Derived class
itself.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 10

Polymorphism and Virtual Functions –Cont’d

Function Overloading Function Overriding

Function Overloading provides multiple
definitions of the function by changing signature.

Function Overriding is the redefinition of base
class function in its derived class with same

signature.

An example of compile time polymorphism. An example of run time polymorphism.

Function signatures should be different. Function signatures should be the same.

Overloaded functions are in same scope. Overridden functions are in different scopes.

Overloading is used when the same function has
to behave differently depending upon parameters

passed to them.

Overriding is needed when derived class function
has to do some different job than the base class

function.

A function has the ability to load multiple times. A function can be overridden only a single time.

In function overloading, we don’t need
inheritance.

In function overriding, we need an inheritance
concept.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 11

Difference Between Function Overloading and Overriding in C++

Dynamic Binding

• In case of few programs, it is impossible to know
which function is to be called until run time. This is
called dynamic binding

• Dynamic binding can be implemented with function
pointers.

• In this method, the pointer points to a function
instead of a variable.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 12

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 13

Dynamic Binding - Example

Output:

In this program, instead of
calling functions directly, we
have called them through
function pointer. The
compiler is unable to use
static or early binding in this
case. In this program the
compiler has to read the
addresses held in the
pointers toward different
functions. Until runtime,
decisions are not taken as to
which function needs to be
executed, hence it is late
binding.

Pointers to derived objects

• Pointers to objects of a base class are type-compatible
with pointers to objects of a derived class.

• Therefore, a single pointer variable can be made to
point to objects belonging to different classes.

• If B is base class and D is derived class from B, then
B *bptr; // Pointer to base class
B bobj; //Base class object
D dobj; //Derived class object
bptr=&bobj // base pointer points to base object

bptr=&dobj // base pointer points to derived object
• This is perfectly valid with C++ because d is an object derived

from B.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 14

Pointers to derived objects

• Base class pointer can access only those members which are
inherited from B and not the members that originally belong to D

• In case a member of D has the same name as one of the members of
B, then any reference to that member by bptr will always access the
base class member.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 15

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 16

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 17

Base class pointer can access only those
members which are inherited from B and not
the members that originally belong to D

Polymorphism and Virtual Functions –Cont’d
Overriding a non-virtual function
• When we use base class’s pointer to hold derived class’s object, base class

pointer or reference will always call the base class version of the function

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 18

Output:

In case a member of D has the same name as
one of the members of B, then any reference
to that member by bptr will always access the
base class member.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 19

Polymorphism and Virtual Functions –Cont’d
Virtual Functions
• Dynamic binding of member functions in C++ can be

done using virtual keyword

• A virtual function is a C++ member function which is
declared within a base class and is overridden (redefined)
by a derived class.

• It is achieved by using the keyword ‘virtual’ in the base
class.

• When we refer to a derived class object using a pointer
(or reference) to the base class, we can call a virtual
function for that object and execute the derived class’s
version of the function.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 20

• Some properties of the virtual functions are
mentioned below

• Virtual functions assure that the correct function is to be
invoked (i.e. called) for an object, irrespective of the type of
pointer (or reference) used for the function call.

• They are primarily used to achieve runtime polymorphism.

• Functions are declared with the virtual keyword in the base
class.

• The function call is resolved at runtime.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 21

Polymorphism and Virtual Functions –Cont’d
Virtual Functions

Polymorphism and Virtual Functions –Cont’d
Virtual Functions

• Rules for Virtual Functions:
• Virtual functions cannot be static and friend to another class

• Virtual functions must be accessed using pointers or
references of base class type

• The function prototype should be same in both base and
derived classes

• A class must not have a virtual constructor. But it can have a
virtual destructor

• They are always defined in the base class and redefined in
the derived class

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 22

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 23

Virtual Function Example

Output:

Polymorphism and Virtual Functions –Cont’d
Virtual Functions
• Runtime polymorphism is achieved only through a pointer (or

reference) of base class type.
• Also, a base class pointer can point to the objects of the base

class as well as to the objects of the derived class.
• In the previous code, base class pointer ‘bptr’ contains the

address of object ‘d’ of the derived class.
• Late binding(Runtime) is done in accordance with the content

of pointer (i.e. location pointed to by pointer) and Early
binding (Compile-time) is done according to the type of
pointer

• Since print() function is declared with the virtual keyword so it
will be bound at run-time (output is “Derived class print
method” as a pointer is pointing to object of derived class)

• show() is non-virtual so it will be bound during compile
time(output is “Base class show method “as a pointer is of base
type).

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 24

Polymorphism and Virtual Functions –Cont’d
Pure Virtual Functions and Abstract Classes in C++

• Sometimes implementation of all functions cannot be provided
in a base class because we don’t know the implementation.

• Such a class is called an abstract class.
• For example, let Shape be a base class.
• We cannot provide the implementation of function draw() in Shape,

but we know every derived class must have an implementation of
draw().

• We cannot create objects of abstract classes.

• A pure virtual function (or abstract function) in C++ is a virtual
function that is declared in the base class but we cannot
implement it, with a '0' assigned to make them pure.

• In this way, the base class becomes an abstract class, and it
must be inherited by a derived class, which provides an
implementation for it.

• Syntax: virtual Return_type function_name() = 0;

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 25

• Characteristics of Pure virtual functions:
• These functions also must have a prefix before the function's

name called 'virtual'.
• In the base class, we can declare it, but we cannot implement

it.
• '0' must be assigned to the function to make them pure.
• The derived class must provide the implementation code for

this function, else this derived class is also termed an 'abstract
class'.

• Note that classes having at least one pure virtual function are
called Abstract classes.

• The main use of pure virtual functions is to create an
abstract class that defines an interface for its derived
classes.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 26

Polymorphism and Virtual Functions –Cont’d
Pure Virtual Functions and Abstract Classes in C++

• An abstract class is a class in C++ which have at least one
pure virtual function.

• An abstract class can have normal functions and variables
along with a pure virtual function.

• An abstract class cannot be instantiated, but pointers and
references of Abstract class type can be created

• Abstract classes are mainly used for Upcasting so that its
derived classes can use their interface

• If an Abstract Class has derived class, they must implement
all pure virtual functions, or else they will become Abstract
too

• An abstract class is like a base class for other classes to
provide a common interface to implement. This helps us use
the polymorphism feature of the programming language.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 27

Polymorphism and Virtual Functions –Cont’d
Pure Virtual Functions and Abstract Classes in C++

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 28

Pure Virtual Function Example

Output:

Polymorphism and Virtual Functions –Cont’d

Virtual Function Pure Virtual Function

In the virtual function, the derived
class overrides the function of the
base class; it is the case of
the function overriding.

In a pure virtual function, the derived call would
not call the base class function as it has not
defined instead it calls the derived function
which implements that same pure virtual
function in the derived call.

Class containing virtual function
may or may not be an Abstract
class.

If there is any pure virtual function in a class,
then it becomes an "Abstract class".

Virtual function in the base does
not enforce to derived for defining
or redefining

In pure virtual function, the derived class must
redefine the pure virtual class of the base class.
Otherwise, that derived class will become
abstract as well.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 29

Polymorphism and Virtual Functions –Cont’d

• Advantages of Pure Virtual Functions
• Abstraction: Pure virtual functions are a way to separate

the interface from the implementation, to make the code
easier to maintain.

• Polymorphism: A base class pointer is used to call functions
of its derived classes, a key way to use polymorphism in
C++.

• Reusability: Since we define a common interface, we
reduce the amount of code and make it more reusable.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 30

Polymorphism and Virtual Functions –Cont’d
Need for Virtual Destructors

• Destructors of the class can be declared as virtual.

• Whenever we do upcast i.e. assigning the derived class object to a base class pointer, the
ordinary destructors can produce unacceptable results.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 31

Output:

• In this program, Ideally, the destructor that is called

when “delete b” is called should have been that of

derived class but we can see from the output that

destructor of the base class is called as base class

pointer points to that.

• Due to this, the derived class destructor is not

called and the derived class object remains intact

thereby resulting in a memory leak.

• The solution to this is to make base class

constructor virtual so that the object pointer points

to correct destructor and proper destruction of

objects is carried out.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 32

Virtual Destructor Example

Output:

Compile-Time Polymorphism Run-Time Polymorphism

It is also called Static Polymorphism. It is also known as Dynamic Polymorphism.

In compile-time polymorphism, the compiler determines
which function or operation to call based on the number,

types, and order of arguments.

In run-time polymorphism, the decision of which function to
call is determined at runtime based on the actual object

type rather than the reference or pointer type.

Function calls are statically binded. Function calls are dynamically binded.

Compile-time Polymorphism can be exhibited by:
1. Function Overloading
2. Operator Overloading

Run-time Polymorphism can be exhibited by Function
Overriding.

Faster execution rate. Comparatively slower execution rate.

Inheritance in not involved. Involves inheritance.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 33

Difference Between Compile Time And Run Time Polymorphism

