UNITHI
OBJECT-ORIENTED PROGRAMMING CONCEPTS

* Topics to be discussed,

» Constructors and Destructors in Derived
Classes

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university

Constructors and Destructors in Derived
Classes

 Whenever we create an object of a class, the default
constructor of that class is invoked automatically to
initialize the members of the class.

4/29/2024

 |f we inherit a class from another class and create an
object of the derived class, it is clear that the default
constructor of the derived class will be invoked but
before that the default constructor of all of the base

classes wil
the base c
and then t
invoked.

be invoke, i.e the order of invocation is that
ass’s default constructor will be invoked first

ne derived class’s default constructor will be

BVL_Kalam Computing Centre, MIT Campus, Anna university

Constructors in Derived Class Example

#include <iostream>
using namespace std;
class Base
{
protected:
Base()
{
cout<<"\nBase class Constructor";
1
|5
class Derived: public Base
{
public:
Derived()
{
cout<<"\nDerived class Constructor";
1
|5

int main() IBase C Constructor

{)erived class Constructor
Derived d;
return O;

}

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university

Constructors and Destructors in Derived
Classes — Cont’d

* Why the base class’s constructor is called on creating
an object of derived class?

 when a class is inherited from other, the data members and
member functions of base class comes automatically in
derived class based on the access specifier but the definition
of these members exists in base class only.

* So when we create an object of derived class, all of the
members of derived class must be initialized but the
inherited members in derived class can only be initialized by
the base class’s constructor as the definition of these
members exists in base class only.

* This is why the constructor of base class is called first to
initialize all the inherited members.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university

Constructors and Destructors in Derived
Classes — Cont’d

* Order of constructor call for Multiple Inheritance

* For multiple inheritance order of constructor call is, the base class’s
constructors are called in the order of inheritance and then the derived class’s

constructor.

* for example if we have defined like this “class Derived: public A, public B”,
then Constructor of class A will be called, then constructor of class B will be

called.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university

Order of constructor call for Multiple Inheritance - Example

#include <iostream> class Derived: public A, public B

using namespace std; {
class A public:
{ Derived()
public: [
Al) cout<<"Derived class Constructor\n";
{ }
cout<<"Class A Constructor\n"; 1.
} int main()
|7 {
class B Derived d;
{ return O;
public:)
B()
{ Output:
cout<<"Class B Constructor\n":
}
b

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university

Constructors and Destructors in Derived
Classes — Cont’d

* Inheritance in Parameterized Constructor

* In the case of the default constructor, it is implicitly accessible from parent to
the child class but parameterized constructors are not accessible to the
derived class automatically, for this reason, an explicit call has to be made in
the child class constructor to access the parameterized constructor of the

parent class
* Syntax Example:

Derived-Constructor (argl, arg2, arg3....): Base 1-Constructor
(argl,arg2), Base 2-Constructor(arg3,arg4)

{...}

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university

1 #include <iostream> File Line |HMessage
2 using I'IH“'IESPHCE Std; == Build file: "no target™ in "no project” (compiler: unknown) =——
3 class Basc e 38 e e oo “basspasntt
4 [H:\2024\C5320... 8 note: candidate: 'Base::Base(int)’
5 pl’ﬂtECtEd: H:%2024%C5320... & note: car.'u:lidate expects 1 argument, 0 provided
H:%20Z4N\C5320. .. 3 note: candidate: 'constexpr Base::Base(const Base&) '
6 int X; H:%2024%C5320... 3 note: candidate expects 1 argument, 0 provided
? pUinc: H:,\20Z4%\C5320. .. 3 note: candidate: 'constexpr Base::Base (Base&&)'
H:%2024%C5320. .. 3 note: candidate expects 1 argument, 0 provided

8 BHSE{iI‘It }{} === Build failed: 1 error(s), 0 warning(s) (0 minute(s), 0 second(s)] =
9 B {

10 this->x=x;

11 cout<<"\nBase class Constructor,x="<<x;

12 |+ 1}

. -

14 class Derived: public Base

15 |&3{

16 inty;

17 public:

18 Derived|)

1905 |

20 cout<<"\nDerived class Constructor":

21 cout<<"\nx="<<x<<"\ny="<<y;

-

B I

24 int main()

25 {

26 Derived d;

27 return O;

entre, MIT Campus, Anna university

28 |}

Constructors and Destructors in Derived
Classes — Cont’d

* Important Points:

 Whenever the derived class’s default constructor is called, the base class’s
default constructor is called automatically.

* To call the parameterized constructor of base class inside the parameterized
constructor of sub class, we have to mention it explicitly.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university

#include <iostream>
using namespace std;
class Base
{
protected:
int x;
public:
Base (int k)
{
cout<<"\nBase class Parameterized Constructor";
X =Kk;

}

Inheritance in Parameterized Constructor - Example

int main()

{
Derived obj(2,3);
obj.display();

}

5

class Derived: public Base
{
inty;
public:
Derived(int a, int b):Base(a)
{
cout<<"™\nDerived class Parameterized Constructor"”;
y=b;
}
void display()

{ Base class Parameterized Constructor

Derived class Parameterized Constructor

cout<<"\nx="<<x;
cout<<"\ny="<<y;
4/29/2024 10

¥

Constructors and Destructors in Derived
Classes — Cont’d

* Destructors in C++ are called in the opposite order of that of
Constructors.

* In inheritance, the order of constructors calling is: from child class
to parent class (child -> parent).

* In inheritance, the order of constructors execution is:
from parent class to child class (parent -> class).

* In inheritance, the order of destructors calling is: from child class
to parent class (child -> parent).

* In inheritance, the order of destructors execution is: from child class
to parent class (child -> parent).

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 11

Order of Calling For Constructors & Destructors
in Inheritance
Class A

v
Class B

v
Class C

Order of Constructor Call Order of Destructor Call

A() - Class A Constructor C() - Class C Destructor
B() - Class B Constructor B() - Class B Destructor
C() - Class C Constructor A() - Class A Destructor

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 12

#include<iostream:> . .
using namespace std:; Destructors in Derived Classes - Example
class baseClass

{ int main()
public: {
baseClass() derivedClass D;
{ return O;
cout <<"\nl am baseClass constructor": }
}
~baseClass()
{
cout <<"\nl am baseClass destructor";
}
I
class derivedClass: public baseClass
{
public: Output:
derivedClass()
{ baseClass constructor
cout <<"\nl am derivedClass constructor"; derivedClass constructor
] derivedClass destructor
~derivedClass() baseClass destructor
{
cout <<"\nl am derivedClass destructor":
}

4/29/2024 }; 1ting Centre, MIT Campus, Anna university

13

Constructors and Destructors in Derived
Classes — Cont’d

* Constructor & Destructor in Multiple inheritance
class C: public A, public B

{
//...
5
* Here, A class in inherited first, so constructor of class A is called first then the
constructor of class B will be called next.

e The destructor of derived class will be called first then destructor of base class
which is mentioned in the derived class declaration is called from last towards
first sequence wise.

4/29/2024 BVL_Kalam Computing Centre, MIT Campus, Anna university 14

#include<iostream> Constructor & Destructor in Multiple inheritance

using namespace std;

class baseClass1 class derivedClass: public baseClass1, public baseClass2

{
{public' public:
' derivedClass()
baseClass1() {
{ n - n
<< :
cout<<"\nl am base(] constructor” }cout \nl am derivedClass constructor":
} o
~paseClass1() { derivedClass()
{ n - n
<< :
cout<<"\nl am base(] destructor™; }cout \nl am derivedClass destructor";
}
1 |7
’ int main()
class baseClass2 {
{ . derivedClass D;
public: return O;
baseClass2() }
{
cout<<"\nl am base(Class2 constructor™; am hace 1 constructor
} am bast 2 constructor
~baseClass2()
{
cout<<"\nl am base(Class2 destructor":
}

4/29/2024 |7 ymputing Centre, MIT Campus, Anna university 15

