
UNIT III

OBJECT-ORIENTED PROGRAMMING CONCEPTS

19-Apr-24 1
BVL_Kalam Computing Centre, MIT

Campus, Anna university

UNITIII
OBJECT-ORIENTED PROGRAMMING CONCEPTS

• Topics to be discussed,

Inheritance

Constructors and Destructors in Derived
Classes

Polymorphism and Virtual Functions

19-Apr-24 2
BVL_Kalam Computing Centre, MIT

Campus, Anna university

UNITIII
OBJECT-ORIENTED PROGRAMMING CONCEPTS

• Topics to be discussed,

Inheritance
Constructors and Destructors in Derived

Classes

Polymorphism and Virtual Functions

19-Apr-24 3
BVL_Kalam Computing Centre, MIT

Campus, Anna university

Inheritance
• Inheritance is one of the most important feature of

Object Oriented Programming.
• The capability of a class to derive properties and

characteristics from another class is called Inheritance.
• It allows user to create a new class (derived class) from

an existing class(base class).
• Inheritance makes the code reusable.
• When we inherit an existing class, all its methods and

fields become available in the new class, hence code is
reused.

• The idea of inheritance implements the is a relationship.
• For example, mammal IS-A animal, dog IS-A mammal

hence dog IS-A animal as well and so on.

19-Apr-24 4
BVL_Kalam Computing Centre, MIT

Campus, Anna university

Inheritance – Cont’d

• Sub Class: The class which inherits properties of
other class is called Child or Derived or Sub class.
The derived class is the specialized class for the
base class.

• Super Class: The class whose properties are
inherited by other class is called the Parent or
Base or Super class.

• NOTE:- All members of a class except Private, are
inherited.

• A class can be derived from more than one
classes, which means it can inherit data and
functions from multiple base classes.

19-Apr-24 5
BVL_Kalam Computing Centre, MIT

Campus, Anna university

Inheritance – Cont’d
• Syntax of Inheritance

class Derivedclass_name : access-specifier Baseclass_name
{
// body of subclass
};
– Derivedclass_name is the name of the derived class
– access-specifier is the mode in which we want to inherit this sub

class, i.e public, protected, or private.
– Base_class_name is the name of the base class from which we want

to inherit the sub class.

• If the access-specifier is not used, then it is private by default.
• Note: A derived class doesn’t inherit access to private data

members. However, it does inherit a full parent object, which
contains any private members which that class declares.

19-Apr-24 6
BVL_Kalam Computing Centre, MIT

Campus, Anna university

Inheritance – Cont’d
• Modes of Inheritance:
• There are 3 modes of inheritance.

– Public Mode: If we derive a subclass from a public base class.
Then the public member of the base class will become public
in the derived class and protected members of the base class
will become protected in the derived class.

– Protected Mode: If we derive a subclass from a Protected base
class. Then both public members and protected members of
the base class will become protected in the derived class.

– Private Mode: If we derive a subclass from a Private base
class. Then both public members and protected members of
the base class will become Private in the derived class.

• Note: The private members in the base class cannot be
directly accessed in the derived class, while protected
members can be directly accessed.

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
7

Inheritance – Cont’d
• Example:

1. class Derived : private Base //private derivation
{ }

2. class Derived : public Base //public derivation
{ }

3. class Derived : protected Base //protected derivation
{ }

4. class Derived : Base //private derivation by default
{ }

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
8

Note:
• When a base class is privately inherited by the derived class, public members of the base

class becomes the private members of the derived class and therefore, the public
members of the base class can only be accessed by the member functions of the derived
class. They are inaccessible to the objects of the derived class.

• On the other hand, when the base class is publicly inherited by the derived class, public
members of the base class also become the public members of the derived class.
Therefore, the public members of the base class are accessible by the objects of the
derived class as well as by the member functions of the derived class.

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
9

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
10

Output:

public derivation Example

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
11

private derivation Example

Output:

Inheritance – Cont’d
• Access Control and Inheritance:

class derived-class: access-specifier base-classA
– derived class can access all the non-private members of its base class.
– Thus base-class members that should not be accessible to the member functions of

derived classes should be declared private in the base class.

19-Apr-24 12
BVL_Kalam Computing Centre, MIT

Campus, Anna university

•A derived class can inherit all base class methods except:
•Constructors, destructors and copy constructors of the base class.
•Overloaded operators of the base class.
•The friend functions of the base class.

• Create a class shape with width and height as its
data members and setWidth() and setHeight() as
member functions which assigns the arguments
received to width and height data members
respectively. Create a class called Rectangle which
inherits from Shape and has a member function
getArea() which returns the area by finding the
product of width and height. Create an object of
Rectangle. Assign values to width and height and
calculate area.

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
13

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
14

Inheritance - Example

Output:

• Create a class StudentInfo with name, age and
gender and its data members, getInfo() and
putInfo() as member functions to get data and
display data respectively. Create a derived class
studentResult with total (for 5 subjects),
percentage and grade as data members and
getMarks(), calcGrade() and displayResult() as
member functions and inherits from
StudentInfo. Get all the details of a student and
print the same.

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
15

Inheritance – Cont’d
• Types of Inheritance:

– Single Inheritance – In this type of inheritance one derived
class inherits from only one base class. It is the most simplest
form of Inheritance.

– Multiple Inheritance – In this type of inheritance a single
derived class may inherit from two or more than two base
classes.

– Hierarchical Inheritance – In this type of inheritance,
multiple derived classes inherits from a single base class.

– Multilevel Inheritance – In this type of inheritance the
derived class inherits from a class, which in turn inherits from
some other class. The Super class for one, is sub class for the
other.

– Hybrid Inheritance/ Multipath (also known as Virtual
Inheritance) – a sub class follows multiple types of
inheritance while deriving properties from the base or super
class

19-Apr-24 16
BVL_Kalam Computing Centre, MIT

Campus, Anna university

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
17

Types of Inheritance

Inheritance – Cont’d
(Single Inheritance in C++)

• In this type of inheritance one
derived class inherits from only
one base class.

• It is the most simplest form of
Inheritance.

• All other types of Inheritance
are a combination or derivation
of Single inheritance.

19-Apr-24 18
BVL_Kalam Computing Centre, MIT

Campus, Anna university

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
19

Single Inheritance - Example

Output:

Inheritance – Cont’d
(Single Inheritance in C++)

• Ambiguity in Single Inheritance in C++

– If parent and child classes have same named
method, parent name and scope resolution
operator (::) is used.

– This is done to distinguish the method of child and
parent class since both have same name.

19-Apr-24 20
BVL_Kalam Computing Centre, MIT

Campus, Anna university

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
21

parent and child classes have same named method

Output:

Inheritance – Cont’d
(Multilevel Inheritance in C++)

• In this type of inheritance the derived
class inherits from a class, which in turn
inherits from some other class.

• The Super class for one, is sub class for
the other.

• When a class is derived from a class
which is also derived from another
class, such inheritance is called
Multilevel Inheritance.

• The level of inheritance can be
extended to any number of level
depending upon the relation.

• Multilevel inheritance is similar to
relation between grandfather, father
and child.

19-Apr-24 22
BVL_Kalam Computing Centre, MIT

Campus, Anna university

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
23

Multilevel Inheritance Example

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
24

Output:

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
25

Multilevel Inheritance Example

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
26

Output:

Inheritance – Cont’d
(Multiple Inheritance in C++)

• In C++ programming, a class can be
derived from more than one
parents.

• When a class is derived from two or
more base classes, such inheritance
is called Multiple Inheritance.

• Multiple Inheritance in C++ allow us
to combine the features of several
existing classes into a single class.

• Syntax:
class subclass_name : access_mode
base_class1, access_mode base_class2,
....
{
// body of subclass

};

19-Apr-24 27
BVL_Kalam Computing Centre, MIT

Campus, Anna university

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
28

Multiple Inheritance Example

Output:

Ambiguity in Multiple Inheritance
– In multiple inheritance, a

single class is derived from
two or more parent classes.

– So, there may be a possibility
that two or more parents
have same named member
function.

– If the object of child class
needs to access one of the
same named member
function then it results
in ambiguity.

– The compiler is confused as
method of which class to call
on executing the call
statement.

19-Apr-24 29
BVL_Kalam Computing Centre, MIT

Campus, Anna university

int main()
{

obj.base1::someFunction(); // Function of base1 class is called
obj.base2::someFunction(); // Function of base2 class is called.

}

This problem can be solved using scope
resolution(::) function to specify which function
to class either base1 or base2

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
30

Multiple Inheritance Example

Output:

• Create two classes named Mammals and
MarineAnimals. Create another class named BlueWhale
which inherits both the above classes. Now, create a
function in each of these classes which prints "I am
mammal", "I am a marine animal" and "I belong to both
the categories: Mammals as well as Marine Animals"
respectively. Now, create an object for each of the
above class and try calling
1 - function of Mammals by the object of Mammal
2 - function of MarineAnimal by the object of
MarineAnimal
3 - function of BlueWhale by the object of BlueWhale
4 - function of each of its parent by the object of
BlueWhale

19-Apr-24
BVL_Kalam Computing Centre, MIT

Campus, Anna university
31

