UNIT I

OBJECT-ORIENTED PROGRAMMING CONCEPTS

BVL_Kalam Computing Centre, MIT

19-Apr-24
P Campus, Anna university

UNITIII
OBJECT-ORIENTED PROGRAMMING CONCEPTS

* Topics to be discussed,
» Inheritance

» Constructors and Destructors in Derived
Classes

» Polymorphism and Virtual Functions

i I
19-Apr-24 BVL_Kalam Computmg.Cent're, MIT .
Campus, Anna universi ty

UNITIII
OBJECT-ORIENTED PROGRAMMING CONCEPTS

* Topics to be discussed,

> Inheritance

» Constructors and Destructors in Derived
Classes

» Polymorphism and Virtual Functions

19-Apr-24 BVL_Kalam Computmg'Cent.re, MIT ;
Campus, Anna universi ty

Inheritance

Inheritance is one of the most important feature of
Object Oriented Programming.

The capability of a class to derive properties and
characteristics from another class is called Inheritance.

It allows user to create a new class (derived class) from
an existing class(base class).

Inheritance makes the code reusable.

When we inherit an existing class, all its methods and
fields become available in the new class, hence code is
reused.

The idea of inheritance implements the is a relationship.

For example, mammal IS-A animal, dog IS-A mammal
hence dog IS-A animal as well and so on.

BVL_Kalam Computing Centre, MIT

19-Apr-24 . .
pr Campus, Anna university

Inheritance — Cont’d

Sub Class: The class which inherits properties of
other class is called Child or Derived or Sub class.
The derived class is the specialized class for the
base class.

Super Class: The class whose properties are
inherited by other class is called the Parent or
Base or Super class.

NOTE:- All members of a class except Private, are
inherited.

A class can be derived from more than one
classes, which means it can inherit data and
functions from multiple base classes.

BVL_Kalam Computing Centre, MIT

19-Apr-24 . .
pr Campus, Anna university

Inheritance — Cont’d

* Syntax of Inheritance
class Derivedclass _name : access-specifier Baseclass_name
{
// body of subclass
7
— Derivedclass_name is the name of the derived class

— access-specifier is the mode in which we want to inherit this sub
class, i.e public, protected, or private.

— Base_class_name is the name of the base class from which we want
to inherit the sub class.
* |f the access-specifier is not used, then it is private by default.

* Note: A derived class doesn’t inherit access to private data
members. However, it does inherit a full parent object, which
contains any private members which that class declares.

BVL_Kalam Computing Centre, MIT

19-Apr-24 . .
pr Campus, Anna university

Inheritance — Cont’d

e Modes of Inheritance:

e There are 3 modes of inheritance.

— Public Mode: If we derive a subclass from a public base class.
Then the public member of the base class will become public
in the derived class and protected members of the base class
will become protected in the derived class.

— Protected Mode: If we derive a subclass from a Protected base
class. Then both public members and protected members of
the base class will become protected in the derived class.

— Private Mode: If we derive a subclass from a Private base
class. Then both public members and protected members of
the base class will become Private in the derived class.

* Note: The private members in the base class cannot be
directly accessed in the derived class, while protected
members can be directly accessed.

[MIT
19-Apr-24 BVL_Kalam Computlng.Cent're, :
Campus, Anna university

Inheritance — Cont’d

 Example:

1. class Derived : private Base //private derivation
{ }
2. class Derived : public Base //public derivation

{ J

3. class Derived : protected Base //protected derivation

{ J

4. class Derived : Base //private derivation by default

{ }

Note:

 When a base class is privately inherited by the derived class, public members of the base
class becomes the private members of the derived class and therefore, the public
members of the base class can only be accessed by the member functions of the derived
class. They are inaccessible to the objects of the derived class.

* On the other hand, when the base class is publicly inherited by the derived class, public
members of the base class also become the public members of the derived class.
Therefore, the public members of the base class are accessible by the objects of the

derived class as well as by the member functions of the derived class.

BVL_Kalam Computing Centre, MIT

19-Apr-24
9-Apr Campus, Anna university

// C++ Implementation to show that a derived class
// dgean’t inherit access to private data members.
// However, it does inherit a full parent object.
class A

{
public:
int x;
protected:
int vy;
private:
int z;
-
class B : public A
{
// =% is public
// v is protected
// =z is not accessible from B
¥
class C : protected A
{
// ® is protected
// y is protected
// z 1is not accessible from C
b
class D : private A // 'private' iz defaunlt for classes
{

// % is priwvate
// y is private
// z is not accessible from D

};

. . . class Derived ublic Base
public derivation Example { P
int o
#include <iostream> public?
using namespace std; void mul ()
class Base {
{ c=b*getA() ;
int a; }
PUhl;EL . wvoid show()
! {
void setAB(int x,int vy)
{ cout <<"b: "<< b;
a=x;b=y; cout << "\pg: "<< c;
} }
int getAl() b
{ int main/()
return a; {
t .
void showhA () Derived d'
{ d.setAB(2,5) ;
cout << "\na:"<<a<<endl; d.showA();
} d.mul () ;
o d.show() ;
d.b=100;
d.mul () ;
d.showh () ;
d.show() ;
19-Apr-24 BVL_Kala return 0O;

Carr}

10

#include <iostream>
using namespace std;
class Base
{
int a;//Not Inheritable
public:
int b;//Inheritable
void setAB(int =, int vy)
{
a=x;b=y;
}
int getA()
{
return a;
}
void showA /()

{
cout <<

b

"\na:"<<a<<endl;

private derivation Example

int main/()

{
Derived d;
d.setAB(Z,5) ;
d.mul () ;
d.showA () ;
d.show() ;

d.b=100;
d.mul () ;
d.show () ;
return 0O;

Output:

File Line Message
class Derived : pr:l.vate Base === Build file: "no target" in "no project" (compiler: unknown)
{ F:w20248%C85320 . _ . In function "int main()"':
lnt c: F:h2024805320. .. 41 error: 'woid Base::setABiint, int)' is inaccessible within this
F:hw2024nC5320... 8 note: declared here
F:n2024%C85320. .. 41 error: 'Base' is not an accessible base of "Derived’
publ:l.c: F:42024%\C5320... 43 error: 'woid Base::showl()' is inaccessibkble within this context
Vold mul {) F-W2024%C85320. .. 1€ note: declared here
{ F:n2024%C85320. .. 43 error: 'Base' is not an accessible base of "Derived’
C:b*getA () . F:%2024\C5320. .. dg error: 'int Base::k' is inasccessikle within this context
r F:w20248%C85320 . _ . 7 note: declared here

void show ()

{
cout <<"\nb:
cout << "\ng:

"<< b;
" << c;

BVL_Kalam Computing Centre, MIT
Campus, Anna university

=== Build £failed: 5 erroris),

0 warning(s)

{0 minute(s),

0 secondis))

11

context

Inheritance — Cont’d

Access Control and Inheritance:
class derived-class: access-specifier base-classA

— derived class can access all the non-private members of its base class.

— Thus base-class members that should not be accessible to the member functions of
derived classes should be declared private in the base class.

base class Type of Inheritence
member
accgss Public Protected Private
specifier
Public Public Protected Private
Protected Protected Protected Private
Private Not accessible Not accessible Not accessible
(Hidden) (Hidden) (Hidden)

*A derived class can inherit all base class methods except:

*Constructors, destructors and copy constructors of the base class.
*Overloaded operators of the base class.
*The friend functions of the base class.

19-Apr-24

BVL_I\dIdHI COMpuUting Cerirce, wviri
Campus, Anna university

12

* Create a class shape with width and height as its
data members and setWidth() and setHeight() as
member functions which assigns the arguments
received to width and height data members
respectively. Create a class called Rectangle which
inherits from Shape and has a member function
getArea() which returns the area by finding the
product of width and height. Create an object of
Rectangle. Assign values to width and height and
calculate area.

#include <iostream>
using namespace std;
class Shape
{
protected:
int width;
int height;
public:
void setWidth(int w)
{
width = w;
}
void setHeight (int h)
{
height = h;
}
b

Inheritance - Example

int main/()

{
Fectangle Rect;

Rect.setWidth (5) ;
Fect.setHeight (7) ;
cout << "Total area:
return 0;

Output:

Total area: 35

class Rectangle: public Shape

{
public:
int getAreal)
{

return

19-Apr-24

(width * height) ;

BVL_Kalam Computing Centre, MIT
Campus, Anna university

LA

o~
< &
T

Rect.getArea ()

<< andl;

14

* Create a class Studentinfo with name, age and
gender and its data members, getinfo() and
putinfo() as member functions to get data and
display data respectively. Create a derived class
studentResult with total (for 5 subjects),
percentage and grade as data members and
getMarks(), calcGrade() and displayResult() as
member functions and inherits from
Studentinfo. Get all the details of a student and
print the same.

Inheritance — Cont’d

* Types of Inheritance:

— Single Inheritance — In this type of inheritance one derived
class inherits from only one base class. It is the most simplest
form of Inheritance.

— Multiple Inheritance — In this type of inheritance a single
derived class may inherit from two or more than two base
classes.

— Hierarchical Inheritance — In this type of inheritance,
multiple derived classes inherits from a single base class.

— Multilevel Inheritance — In this type of inheritance the
derived class inherits from a class, which in turn inherits from
some other class. The Super class for one, is sub class for the
other.

— Hybrid Inheritance/ Multipath (also known as Virtual
Inheritance) — a sub class follows multiple types of

inheritance while deriving properties from the base or super
class

19-Apr-24 BVL_Kalam Computing Centre, MIT

. . 16
Campus, Anna university

19-Apr-24

Types of Inheritance

[
es

J/i \—l Multiple Inheritance
—

H}’bl’ld Inheritance -I l-]-]

HierarchicalInheritance |

7h

-3

Single Inheritance

Multilevel Inheritance

BVL_Kalam Computing Centre, MIT
Campus, Anna university

17

Inheritance — Cont’d
(Single Inheritance in C++)

| Class A ‘(Base Class)

Class B

class A

{

b

(Derived Class)

class B: public A

{

b

19-Apr-24

* In this type of inheritance one
derived class inherits from only
one base class.

* |tis the most simplest form of
Inheritance.

* All other types of Inheritance
are a combination or derivation
of Single inheritance.

BVL_Kalam Computing Centre, MIT
Campus, Anna university

18

Single Inheritance - Example

#include<iostream>
using namespace std;
class father

{
public:
void house ()
{
cout<<"Have ZBHK House."<<endl;
t
b
class son:public father
{
public:
void car ()
{
cout<<"Have Audi Car."<<endl;
t
b
int main/() Output:
{
son o; Have 2BHK House.
o.house () ; .
o.car(); Have Audi Car.
return 0;
}
19-Apr-24 BVL_Kalam Computing Centre, MIT 19

Campus, Anna university

Inheritance — Cont’d
(Single Inheritance in C++)

 Ambiguity in Single Inheritance in C++

— If parent and child classes have same named
method, parent name and scope resolution
operator (::) is used.

— This is done to distinguish the method of child and
parent class since both have same name.

BVL_Kalam Computing Centre, MIT

19-Apr-24 .
pr Campus, Anna universi ty

20

parent and child classes have same named method

#include <iostream>
using namespace std;
class staff

{
protected:
string name;
int code;
public:
void getdatal();
}:
class typist: public staff
{
private:
int speed;
public:
void getdatal() ;
void display();
}:

void staff::getdatal)
{

cout<<"Name:";
cin>>name ;
cout<<"Code:";
cin>>code;

19-Apr-24

void typist::getdatal)
{
cout<<"Speed:";
cin>>speed;
}
void typist::display()
{

BVL_Kalam Computing Centre, MIT
Campus, Anna university

cout<<"Name:"<<name<<endl;
cout<<"Code:"<<code<<endl;
cout<<"Speed:"<<speed<<endl;

t

int main /()

{
typist t;
cout<<"Enter data"<<endl;
t.staff::getdatal() ;
t.getdatal() ;
cout<<endl<<"Display data"<<endl;
t.display/():;

} return 0; Output: Enter data

Name:Ajay
Code:112
Speed:123

Display data
Name:Ajay
Code:112
Speed:123

21

Inheritance — Cont’d
(Multilevel Inheritance in C++)

* In this type of inheritance the derived

ClassA | Base Class of Class B class inherits from a class, which in turn
l inherits from some other class.

Classp | QevedfomClassaand e The Super class for one, is sub class for
l the other.

e L —— e When a class is derived from a class

which is also derived from another
class, such inheritance is called

class A Multilevel Inheritance.

L * The level of inheritance can be

}: extended to any number of level
*{?1355 B: public A depending upon the relation.

e e Multilevel inheritance is similar to

bi relation between grandfather, father

1 C: blic B .
P and child.

BVL_Kalam Computing Centre, MIT

. 22
}; Campus, Anna university

#include <iostream> Multilevel Inheritance Example

using namespace std;

class A //Base Class : class A

{

private:
int a;

public:
void set a(int val a)
{

a=val a;

}
void disp a(void)

{

cout << "Value of a: " << a << endl;

Here Class B is base cl for cla:
fand Derived class for A

class B: public A
{
private:
int b;

public:
f/assign wvalue of a from here

void sét_b(int val a, int val b)

{
assign value of a by calling function of class
set a(val a);
b=val b;
}
void disp b(void)
{
f/display value of

disp af():
cout << "Value of b: " << b << endl;

class C: public B

{

private:
int c;
public:

void set c(int val a, int val b, int val c)

{
/*** Multilevel Inheritance ***/
set b(val a,val b);
c=val c;
}
void disp c(void)
{
disp b();
cout << "Value of c: " << ¢ << endl;
}
b
int main /()
{
: Output:
C objC;
. o | Value of a: 186
objC.set < (10,20,30);
I Set_ _ Value of b: 20
objC.disp c();
Value of c: 38
return 0;
}
19-Apr-24 BVL_Kalam Computing Centre, MIT

Campus, Anna university

24

Multilevel Inheritance Example

#include<iostream>
using namespace std;

class AddData //Base Class
{
protected:
int subjects[3] ;
public:
void accept details()
{

cout<<"\n Enter Marks for Three Subjects ";
cout<<"\n ---- - - - - - - - - - -\ -\ 0\ : \ : l - \n";
cout<<"\n English : ";

cin>>subjects[0];
cout<<"\n Maths : ";
cin>>subjects([1l];
cout<<"\n History : :
cin>>subijects[2];

}i

//Class Total — Derived Class.
/Derived from class AddData and
class Total :|public AddData

{
protected:
int total;
public:
void total of three subjects()
{
total = subjects[0] + subjects[l] + subjects[2];
}
bi :
19-Apr-24 BVL_Kalam Computing Centre, MIT

Campus, Anna university

class Percentage :|public Total

{

private:
float per;
public:
void calculate percentage ()
{
per=total/3.0;
t
void show result()
{
cout<<"\n ---------------- - - - - - "~ " ——————— \n";
cout<<"\n Percentage of a Student

b
int main/{()

(Output:

Percentage p;

p.accept details();
p.total of three subjects();
p.calculate percentage()
p.show result();

return 0U;

BVL_Kalam Computing Centre, MIT

19-Apr-24 . .
pr Campus, Anna university

Inheritance — Cont’d
(Multiple Inheritance in C++)

* |In C++ programming, a class can be
(Base Class 1) | Class B ClassC | (Baseclass2) derived from more than one

\/ parents.

Crass A | (borved Clace! When a class is derived from two or
more base classes, such inheritance
is called Multiple Inheritance.

class B * Multiple Inheritance in C++ allow us
{ to combine the features of several
SR existing classes into a single class.
class C ° SyntaX:
'_[o class subclass_name : access_mode
;s base_classl, access_mode base_class2,
class A: public B, public C
{ {
} // body of subclass

;

19-Apr-24 BVL_Kalam Computing Centre, MIT 27

Campus, Anna university

Multiple Inheritance Example

class result : public student, public sports

{

tinclude<iostream>
using namespace std;

int tot, avg;
class student ! El

(public:
void display ()
protected: |
%nt rno, ml, m2Z; tot = (ml + m2 + sm);
PUbllcf avg = tot / 3;
void getData() cout << "\n\nRoll No: " << rno:;
{ cout << "\nTotal: " << tot;
cout << "Enter the Roll no :"; cout << "\nj{verage: " << avg;
cin>>1no; }
cout << "Enter the two marks "y)
cin >> ml>>m2; int main ()
} {
I result obj;
class sports obj.getDatal() ;
{ obj.getsm() ;
protected: obj.display()
int sm; am }
public: Output:
void getsm/()
(Enter the Roll no :111
cout << "\nEnter the sports mark :"; Enter the two marks
cin>>sm;
} Enter the sports mark :8
i
Roll No: 111
Total: 267
Average: 89
BVL Kal i MIT
19-Apr-24 _Kalam Computing Centre,)8

Campus, Anna university

Ambiguity in Multiple Inheritance

class basel

" iie. — In multiple inheritance, a
void someFunction() S|ng|e ClaSS |S derived from
Lo / two or more parent classes.
class bases — So, there may be a possibility
void someFunction() that two or more parents
Lot e } have same named member
class derived : public basel, public base2 function.

{ — |If the object of child class

b

int main() needs to access one of the
O v oo same.named member

ob7 . some Funct 1on () function then it results
} in ambiguity.

This problem can be solved using scope
resolution(::) function to specify which function
to class either basel or base2

— The compiler is confused as
method of which class to call
on executing the call

int main() statement.
{

obj.basel::someFunction(); // Function of basel class is called

obj.base2::someFunction(); // Function of base2 class is called.

} 19-Apr-24 BVL_Kalam Computmg.Cent're, MIT 59
Campus, Anna university

Multiple Inheritance Example

#include<iostream>

using namespace std; class C : public A, public B
class A {
{ public:
protected: void getData ()
int x; {
void get () A::get ()
{ B::get ()
cout<<"Enter wvalue of =: "; t
cin >> X; void sum{()
} {
}; cout << "Sum = " << x + y;
class B }
{ b
protected:
int vy; int main()
void get () {
{ C objl;
cout<<"Enter wvalue of y: "; objl.getData();
cin >> y; objl.sum() ;
} return O;
}: }
OUtpUt: Enter value of x: 4
Enter value of y: 5
Sum = 9
19-Apr-24 BVL_Kalam Computing Centre, MIT 30

Campus, Anna university

* Create two classes named Mammals and
MarineAnimals. Create another class named BlueWhale
which inherits both the above classes. Now, create a
function in each of these classes which prints "l am
mammal”, "l am a marine animal"” and "l belong to both
the categories: Mammals as well as Marine Animals”
respectively. Now, create an object for each of the
above class and try calling
1 - function of Mammals by the object of Mammal
2 - function of MarineAnimal by the object of
MarineAnimal
3 - function of BlueWhale by the object of BlueWhale
4 - function of each of its parent by the object of
BlueWhale

