

CS3201: OBJECT ORIENTED PROGRAMMING LABORATORY

Topic: Function templates, class templates, namespaces and exception handling

Date: April 22, 2025

Spot Questions 4 x 10 = 40

1. Design and implement a matrix calculator that operates within a namespace called MathLib

and supports both real and complex number operations using templates. Inside this

namespace, define a class template Matrix<T> that stores a 2D matrix of any numeric type,

including int, double, and std::complex<double>. Implement a function template

MatrixMultiply that performs matrix multiplication and returns the resulting matrix. To

handle errors related to invalid matrix dimensions, create a custom exception class

DimensionMismatchError inside a nested namespace MathLib::Errors, inheriting from

std::exception. This exception should be thrown whenever two matrices are not compatible

for multiplication. Ensure your implementation can handle complex numbers correctly by

utilizing the <complex> library and allowing std::complex<T> as a valid type for the matrix

elements. In the main() function, demonstrate multiplication of both integer and complex

matrices, print the results in a readable format, and handle any thrown exceptions gracefully

using try-catch blocks.

2. Within a CalculatorLib namespace, define a function template Power<T> that computes

baseexponent for numeric types and throws a NegativeExponentError if the exponent is negative

and the base is non-floating-point. Implement a class template ScientificCalculator<T> that

includes this function along with other operations like square root and logarithm. Place all

error types in a CalculatorLib::Exceptions namespace.

3. Write a C++ program that simulates a type-safe expression evaluator within a namespace

called SafeEval. The program should include a function template Evaluate<T>(T a, T b, char

op) that performs arithmetic operations (+, -, *, /) on the inputs a and b. You should define

three custom exception classes: InvalidOperatorError, DivisionByZeroError, and

TypeMismatchError, all inheriting from std::exception, and place them in a nested namespace

SafeEval::Errors. The Evaluate function should throw these exceptions under appropriate

conditions — for example, if an unsupported operator is passed, if a division by zero is

attempted (for non-floating-point types), or if a string type is passed where arithmetic is not

meaningful. In your main() function, call Evaluate with various inputs to deliberately trigger

each of these exceptions. Use multiple catch blocks to catch each specific error type and print

a custom error message. Conclude with a final catch(...) block that handles any unexpected

exception types and displays a generic error message.

4. Design a templated Stack<T> class inside a Containers namespace that supports push, pop,

top, and size operations. Implement custom exception handling in a nested namespace

Containers::Errors, with an EmptyStackException that is thrown when attempting to pop or

access the top of an empty stack. Write a function template that accepts a Stack<T> and

prints all elements without modifying the original stack. Finally, demonstrate usage of this

class with both int and string types in a main function, using try-catch blocks to gracefully

handle exceptions.

