

CS3201: OBJECT ORIENTED PROGRAMMING LABORATORY

Topic: Virtual function, runtime polymorphism, compile time polymorphism

Lab: 06

Date: April 02, 2025

EXECUTION TASKS

1. Design a hierarchical payroll management system using abstract classes and pure virtual

functions. Implement a base class Employee with attributes such as name, ID, and

baseSalary, along with a pure virtual function calculateSalary() to enforce salary

computation in derived classes. Create specialized employee types including Manager, who

receives a fixed base salary, a performance bonus, and company shares linked to profit;

Developer, who earns a base salary, overtime pay, and an additional bonus for technical

certifications; SalesExecutive, whose compensation includes a base salary plus a commission

percentage of revenue generated; and Intern, who receives a stipend along with a project

completion bonus. Store employee objects using pointers and leverage polymorphism to

dynamically compute salaries. Implement operator overloading for == and < to compare

employee salaries and enable sorting in descending order based on earnings. Extend the

system to allow dynamic role transitions, such as an Intern being promoted to Developer,

while ensuring the original object reference remains intact.

2. Design a custom string formatting utility similar to std::format in C++, utilizing function

overloading and operator overloading to dynamically format different data types. Implement

a class StringFormatter with overloaded methods such as format(int value), which converts

an integer to a string representation; format(double value, int precision), which formats a

floating-point number with a specified decimal precision; format(bool value), which converts

a boolean to either "true" or "false"; and format(string value, int width, char fillChar), which

formats a string by applying padding using a specified width and fill character. Enhance the

system by overloading the << operator to support chained formatting, enabling expressions

like cout << sf << "Value: " << sf.format(123) << ", Pi: " << sf.format(3.14159, 2);.

Additionally, overload the + operator to concatenate formatted strings seamlessly.

3. Design a data analysis engine using function overloading and operator overloading to process

multiple data formats efficiently. Implement a class DataAnalyzer with overloaded methods

such as analyze(int[], int size), which computes statistical measures like mean, median, and

mode for integer datasets; analyze(double[], int size), which calculates variance and standard

deviation for floating-point datasets; and analyze(std::string data), which performs word

frequency analysis on text data. Enhance the system by overloading the << operator to allow

seamless reporting, enabling expressions like cout << analyzer; to print summary statistics.

Additionally, overload the + operator to combine multiple datasets dynamically, allowing

complex multi-source data analysis.

4. Design an banking system. The system should include a base class BankAccount, which

should have two key attributes: accountNumber and balance. The base class should contain a

pure virtual function withdraw(double amount) to enforce withdrawal policies, as well as a

deposit(double amount) method to allow adding funds to the account. Additionally, include a

virtual function detectFraud(double amount) in the base class, which will flag suspicious

activities based on the withdrawal amount. Create a SavingsAccount that restricts

withdrawals if the balance falls below a minimum threshold, and applies a dynamic monthly

interest rate based on the balance; a CurrentAccount that allows overdraft up to a specified

limit but imposes penalties when the overdraft limit is exceeded; and a CryptoAccount that

applies withdrawal fees based on real-time volatility in simulated market conditions. Each of

these derived classes should override the withdraw and detectFraud functions to implement

their specific behaviors.To track all deposit and withdrawal transactions, create a mixin class

TransactionHistory that logs transaction details. This class should use multiple inheritance

to be mixed into the different account types. Each account type should have the ability to

display its transaction history, as well as a mechanism to detect fraud if a withdrawal exceeds

a specific threshold percentage of the account balance.

