
CS3201: OBJECT ORIENTED PROGRAMMING LABORATORY 

Topic: Multiple Inheritance, Function Overriding, Constructors in Inheritance, Memory 

Management 

 

Lab: 5 

Date: March 12, 2025 

 

Spot Questions: 

1. Create a base class ComplexNumber with attributes real and imag, and overload 

operator* to perform complex number multiplication. Create another base class 

MathUtilities with a method magnitude() to compute the magnitude of a complex 

number and a method conjugate() to return the complex conjugate. Derive a class 

AdvancedComplex that inherits from both, overrides operator* to improve 

multiplication accuracy using the conjugate method, and uses a dynamically allocated 

char* to store multiplication history. Initialize all attributes via constructor chaining, 

manage memory properly, and test with multiple complex number multiplications and 

magnitude calculations in main(). 

 

2. Create a base class CartItem with attributes itemName and price, and a virtual 

method calculateFinalPrice() to compute the final price after applying discounts or 

taxes. Create derived classes ElectronicsItem, ClothingItem, and GroceryItem, 

each overriding calculateFinalPrice() with specific pricing rules: ElectronicsItem 

applies a 5% discount if the price is over Rs.5000/-, ClothingItem applies a seasonal 

discount, and GroceryItem adds dynamic tax. Use a base class pointer to store 

different item types in a vector<CartItem*> and process them dynamically. Test in 

main() by adding multiple items to the cart and verifying that the correct overridden 

method is executed for each type. 

 

 

 



3. Create a base class Student with attributes name and ID, and a constructor that 

initializes them. Derive a class GradedStudent from Student, adding an attribute 

score. Implement constructor chaining so that GradedStudent calls the Student 

constructor before initializing score. Overload the “< and ==” operators to compare 

students based on their scores. Test in main() by creating multiple students and 

comparing them to determine rankings. 

 

4. Create a base class Passenger with attributes char* name, int age, and char* 

passportNumber, with memory allocated dynamically for name and passportNumber. 

Implement a copy constructor and overloaded assignment operator to ensure deep 

copying. Derive a class Ticket that inherits from Passenger, adding char* 

flightNumber and double price, with flightNumber dynamically allocated. Ensure the 

destructor correctly deallocates all dynamically allocated memory. Test in main() by 

creating and copying Ticket objects to verify correct memory management and deep 

copy handling. 


