
CS3201: OBJECT ORIENTED PROGRAMMING LABORATORY

Topic: Multiple Inheritance, Function Overriding, Constructors in Inheritance, Memory

Management

Lab: 05

Date: March 05, 2025

OBSERVATION QUESTIONS

1. How does multiple inheritance lead to ambiguity when base classes define the same

function?

2. Guess the output of this code and explain why it behaves this way:

#include <iostream>

using namespace std;

class A {

public:

 A() { cout << "A "; }

 ~A() { cout << "~A "; }

};

class B : public A {

public:

 B() { cout << "B "; }

 ~B() { cout << "~B "; }

};

int main() {

 B* ptr = new B();

 delete ptr;

 return 0;

}

3. Describe the overriding behavior and its limitations.

4. Guess the output of this code and explain the memory management issue and a

potential fix:

#include <iostream>

using namespace std;

class X {

public:

 int* data;

 X(int val) { data = new int(val); cout << "X: " << *data << " "; }

 ~X() { delete data; cout << "~X "; }

};

int main() {

 X* obj = new X(5);

 X* copy = obj;

 delete copy;

 delete obj; // Double delete attempt

 return 0;

}

5. How does constructor initialization work in multiple inheritance with parameterized

base classes, including the order of execution?

6. Guess the output of this code and explain the function overriding behavior with

multiple inheritance:

#include <iostream>

using namespace std;

class Base1 {

public:

 void show() { cout << "Base1 "; }

};

class Base2 {

public:

 void show() { cout << "Base2 "; }

};

class Derived : public Base1, public Base2 {

public:

 void show() { cout << "Derived "; }

};

int main() {

 Derived d;

 Base1* b1 = &d;

 Base2* b2 = &d;

 b1->show();

 b2->show();

 return 0;

}

7. What are the implications of not properly managing memory in an inheritance

hierarchy, especially when a base class pointer deletes a derived object?

8. Guess the output of this code and explain the constructor/destructor sequence in

inheritance:

#include <iostream>

using namespace std;

class Base {

public:

 Base(int x) { cout << "Base: " << x << " "; }

 ~Base() { cout << "~Base "; }

};

class Derived : public Base {

public:

 Derived(int x, int y) : Base(x) { cout << "Derived: " << y << " "; }

 ~Derived() { cout << "~Derived "; }

};

int main() {

 Derived* d = new Derived(3, 4);

 delete d;

 return 0;

}

EXECUTION TASKS

Develop a banking system that simulates real-world financial operations. Use multiple

inheritance to combine account types or functionalities, override methods to customize

behavior, chain constructors to initialize complex hierarchies, and manage dynamic memory

for data such as transaction logs, customer names, or account details. Focus on practical

banking operations like deposits, withdrawals, interest calculations, and secure storage.

1. Create a base class SavingsAccount with attributes balance and rate, and a method

calculateInterest() that increases the balance. Create another base class LoanAccount with

attributes debt and rate, and a method calculateInterest() that increases the debt. Derive a

class CombinedAccount that inherits from both, overrides calculateInterest() to apply

interest to both balance (increase) and debt (decrease by a fraction, e.g., debt -= debt * rate /

2), and uses a dynamically allocated char* for a transaction note. Initialize all attributes via

constructor chaining, manage memory properly, and test with interest calculations and

transaction logging in main().

2. Implement a base class Transaction with a dynamically allocated char* description and a

method record(). Derive two classes: DepositTransaction (overrides record() to log

"Deposit: +amount") and WithdrawalTransaction (overrides record() to log "Withdrawal:

-amount"). Create a HistoryManager class that maintains a dynamic array of Transaction*

pointers, resizes it when full, and displays the history. Use base class pointers to call

overridden methods, manage memory for the array and descriptions, and test with multiple

transactions in main().

3. Design a base class Person with attributes name (dynamic char*) and age, and a method

displayInfo(). Derive a class BankCustomer that adds accountID and balance, overrides

displayInfo() to show all details, and overloads the ‘>’ operator to compare customers by

balance. Use constructor initialization for dynamic memory, ensure proper cleanup in

destructors, and test in main() by creating a list of customers, displaying their info, and

comparing their balances.

4. Create a base class Vault with attributes capacity and a dynamically allocated int* assets

array, plus a method addAsset(). Create a second base class SecurityLayer with attribute pin

and method validatePin(). Derive a class SecureVault that inherits from both, overrides

addAsset() to add an asset only if the pin is correct, and resizes the assets array if full. Use

constructor chaining to initialize attributes, manage memory for the array, and test in main()

with valid and invalid pin attempts.

