
SYNCHRONIZATION IN JAVA

Synchronization in Java is used to control access to shared resources in

multithreading to avoid race conditions and ensure thread safety. When multiple

threads try to access a shared resource simultaneously, data inconsistency can

occur. Synchronization ensures that only one thread can access the resource at a

time.

Example Scenario (Without Synchronization)
 Suppose two threads (T1 and T2) are trying to withdraw money from a

shared bank account.
 If both threads access the balance simultaneously, data inconsistency may

occur.

🔽 Without Synchronization
Initial Balance: $1000
Thread T1 withdraws $600 → Checks balance: $1000
Thread T2 withdraws $500 → Checks balance: $1000
Both proceed → Balance becomes $400 (Incorrect! Overdrawn)

2 Types of Synchronization

1. Synchronized Methods

 Use the synchronized keyword to lock the method.
 Only one thread can execute the method at a time.

🔽 Diagram: Synchronized Method

🔽 Code Example

class BankAccount {
 private int balance = 1000;

 // Synchronized method
 public synchronized void withdraw(int amount) {
 if (balance >= amount) {
 System.out.println(Thread.currentThread().getName() + " is withdrawing " +
amount);
 balance -= amount;
 System.out.println("Remaining Balance: " + balance);
 } else {
 System.out.println("Insufficient funds for " +
Thread.currentThread().getName());
 }
 }
}

2. Synchronized Block

 Locks only a specific block inside a method.
 More efficient than synchronizing the entire method.

🔽 Diagram: Synchronized Block

🔽 Code Example

class BankAccount {
 private int balance = 1000;

 public void withdraw(int amount) {
 System.out.println(Thread.currentThread().getName() + " is trying to withdraw");
 synchronized (this) { // Locking only the critical section
 if (balance >= amount) {
 System.out.println(Thread.currentThread().getName() + " is withdrawing "
+ amount);
 balance -= amount;
 System.out.println("Remaining Balance: " + balance);
 } else {
 System.out.println("Insufficient funds for " +
Thread.currentThread().getName());
 }
 }
 }
}

3. Static Synchronization

 Used when multiple threads access static methods.
 The class itself is locked instead of an instance.

🔽 Diagram: Static Synchronization

🔽 Code Example

class Bank {
 private static int totalFunds = 1000;

 // Static synchronized method
 public static synchronized void deposit(int amount) {
 totalFunds += amount;
 System.out.println("Total Funds: " + totalFunds);
 }
}

3 When to Use Synchronization?

 When multiple threads access shared resources.
 When data consistency is required.
 Avoid overuse! It can cause performance issues due to thread blocking.

Case Study: Multi-User Bank Account System with Synchronization

Develop a Bank Account Management System where multiple users (threads)
attempt to withdraw money simultaneously. The system should ensure:

1. Only one user can withdraw at a time (Thread Safety).
2. If insufficient funds exist, the withdrawal is denied.
3. The balance should remain consistent across transactions.

1. Create the BankAccount Class

 Shared resource with a synchronized withdraw() method.

class BankAccount {
 private int balance;

 public BankAccount(int balance) {
 this.balance = balance;
 }

 // Synchronized method to ensure only one thread withdraws at a time
 public synchronized void withdraw(int amount, String userName) {
 System.out.println(userName + " is trying to withdraw " + amount);

 if (balance >= amount) {
 System.out.println(userName + " is withdrawing...");
 balance -= amount;
 System.out.println(userName + " completed withdrawal. Remaining Balance:
" + balance);
 } else {
 System.out.println("Insufficient funds for " + userName);

 }
 }
}

2. Create User Threads (Simulating Multiple Users)

 Each user tries to withdraw money from the same account.

class User extends Thread {
 private BankAccount account;
 private int amount;
 private String userName;

 public User(BankAccount account, int amount, String userName) {
 this.account = account;
 this.amount = amount;
 this.userName = userName;
 }

 @Override
 public void run() {
 account.withdraw(amount, userName);
 }
}

3. Implement the Main Class

 Create multiple user threads trying to withdraw money.

public class BankSystem {
 public static void main(String[] args) {
 BankAccount account = new BankAccount(1000); // Initial balance: 1000

 // Creating multiple users trying to withdraw money
 User user1 = new User(account, 600, "Alice");
 User user2 = new User(account, 500, "Bob");
 User user3 = new User(account, 300, "Charlie");

 // Start threads
 user1.start();
 user2.start();
 user3.start();
 }
}

Output

Alice is trying to withdraw 600
Alice is withdrawing...
Alice completed withdrawal. Remaining Balance: 400
Bob is trying to withdraw 500
Insufficient funds for Bob
Charlie is trying to withdraw 300
Charlie is withdrawing...
Charlie completed withdrawal. Remaining Balance: 100

