
Practical Exercise in Java Collection Framework

1.​ A university library needs a system to manage book records. Each book should

have a Book ID, Title, Author, and Price.

2.​ The system should allow the following functionalities:

a.​ Add Books to the collection.

b.​ Remove a Book based on its ID.

c.​ Search for a Book by title.

d.​ Sort Books by Price (Lowest to Highest) using the Comparable Interface.

e.​ Maintain a Stack for Tracking Borrowed Books (Last Borrowed First).

3.​ Develop a Java-based Library Book Management System using Generic Classes

and Java Collections Framework.

4.​ The system should manage a collection of books, allow users to add, remove,

search, and sort books based on different criteria.

5.​ It should also use a Stack to maintain a history of borrowed books and implement

the Comparable Interface for sorting books.

6.​ Use Generic Classes (for book data storage), Use Collections Framework (List,

Stack), and Use Comparable Interface (for sorting books).

Basic Code Template

import java.util.*;
// Generic Class for Library
class Library<T> {
 private List<T> books = new ArrayList<>();
 public void addBook(T book) {
 books.add(book);
 }
 public void removeBook(T book) {
 books.remove(book);
 }
 public List<T> getBooks() {
 return books;
 }
}
// Book Class implementing Comparable
class Book implements Comparable<Book> {
 private int bookID;
 private String title;
 private String author;
 private double price;
 public Book(int bookID, String title, String author, double price) {
 this.bookID = bookID;
 this.title = title;
 this.author = author;
 this.price = price;
 }

 public String getTitle() {
 return title;
 }

 public double getPrice() {
 return price;
 }

 @Override
 public int compareTo(Book other) {
 return Double.compare(this.price, other.price);
 }

 @Override
 public String toString() {
 return "[ID: " + bookID + ", Title: " + title + ", Author: " + author + ", Price: " +
price + "]";
 }
}

public class LibraryManagement {
 public static void main(String[] args) {
 Library<Book> library = new Library<>();
 Stack<Book> borrowedBooks = new Stack<>();

 // Adding books to library
 library.addBook(new Book(1, "Java Programming", "James Gosling", 599.99));
 library.addBook(new Book(2, "Data Structures", "Robert Lafore", 499.50));
 library.addBook(new Book(3, "Machine Learning", "Tom Mitchell", 799.75));

 // Display all books
 System.out.println("Books in Library:");
 for (Book book : library.getBooks()) {
 System.out.println(book);
 }

 // Sort books by price
 List<Book> sortedBooks = new ArrayList<>(library.getBooks());
 Collections.sort(sortedBooks);
 System.out.println("\nBooks Sorted by Price:");
 for (Book book : sortedBooks) {
 System.out.println(book);
 }

 // Borrow a book (Push to Stack)
 Book borrowed = sortedBooks.get(0);
 borrowedBooks.push(borrowed);
 System.out.println("\nBorrowed Book: " + borrowed);

 // Return a book (Pop from Stack)
 Book returnedBook = borrowedBooks.pop();
 System.out.println("\nReturned Book: " + returnedBook);
 }
}

Highlights

●​ Generic Class (Library<T>) – Manages books using generics.

●​ Comparable Interface – Sorts books by price.

●​ Collections Framework (List, ArrayList, Stack) – Stores and processes books.

●​ Stack – Manages borrowed books (LIFO order).

●​ Sorting with Collections.sort() – Orders books by price.

SPOT

1.​ Book Borrowing System

●​ Keep track of borrowed books in a separate collection (e.g., a

HashMap<String, List<Book>> where key = student name, value = list of

borrowed books).

●​ Implement a function to return books and update the inventory

accordingly.

2.​ Categorization of Books using Map

●​ Use a HashMap<String, List<Book>> where the key is a category/genre

(e.g., Fiction, Science, History) and the value is a list of books in that

category.

●​ Allow users to view books by category.

	1.​Book Borrowing System
	2.​Categorization of Books using Map

