
Banking Application

Project Objective:

Create a console based Java application that would allow the customer of a bank to perform
day to day bank transactions. The following are the tasks that need to be performed by the
Customer.

1. View balance.
2. Transfer amount.

Overview:

View balance: If the account number is given the balance should be returned

Transfer Amount: This function is used to transfer money from one account to another
account.
For the operation to be successful, the following conditions are to be met.

1. Both the account numbers should be valid

2. The account number from where the money is transferred should have enough money
for performing the transfer operation

If all these conditions are met, the given amount has to be debited from the payer and credited
to the beneficiary (account_tbl) and an entry has to be made in the transfer_tbl

A. Database Design:

1. Create a new user in database [To be done in the backend by using sql commands]

a) Note: Do NOT use the default scott/tiger account of oracle for this project. You will
have to create a new user in the below mentioned format.

b) Username/password : B<batchnumber><employeeid>

For example, if your batch number is 39806 and Employee number is 12345, then
the oracle user should be B3980612345 and the password should be B3980612345

c) For JDBC connection, only use XE as service name and 1521 as port number

2. Steps for creating a new user

a) Open command prompt

b) Sqlplus / as sysdba

c) Create user <username> identified by <password>; [For example to create a user
named“test” with password “test” : create user test identified by test;]

d) Grant connect,resource to <username>; [E.g: grant connect,resource to test;]
e) Commit;
f) Exit;

3. Create Table [To be done using sql commands, after logging-in as the new user that
has been created in above step]

Table Name: ACCOUNT_TBL
Values for this table will be hardcoded directly.

Column Datatype Description

Account_Number Varchar2(10) Primary Key.

Customer_Name Varchar2(15) Account holder name.

Balance Number(10,2) Account Balance

Insert some records into the Account_TBL

Sample Records

ACCOUNT_NUMBER CUSTOMER_NAME BALANCE

1234567890 Reddy 80000
1234567891 Mahesh 0
1234567892 Dhanu 100
1234567893 Sam 500

Table Name: TRANSFER_TBL

Column Datatype Description

Transaction_ID Number(4) Primary Key

Account_Number Varchar2(10) Foreign Key, this field
references Account_Number
field of Account_tbl.

Beneficiary_account_number Varchar2(10) Foreign Key, this field
references Account_Number
field of Account_tbl.

Transaction_Date Date Date of transaction.

Transaction_Amount Number(10,2) Amount to be transferred.

4. Create Sequence:

Sequence Name : transactionId_seq

Sequence Name Minimum

Value
Max

Values
Incremental

value
Start

Value

transactionId_seq 1000 9999 1 1000

B. System Design:

Name of the package Usage

com.wipro.bank.service This package will contains the class which displays the console menu
and takes the user input. It contains the methods that performs
validation on the given input and invokes the respective DAO
operations

com.wipro.bank.bean This package will contain the entity class named TransferBean.

com.wipro.bank.dao This package will contain the class that will do the database related
JDBC code.

com.wipro.bank.util This package will contain the class to establish database connection and
also the class that handles the user defined exception.

Package: com.wipro.bank.util

Class Method and Variables Description

DBUtil DB connection class

 public static
Connection getDBConnection()

Establish a connection to the
database and return the
java.sql.Connection reference

InsufficientFundsException User defined exception class

 public String toString Returns a
String “INSUFFICIENT FUNDS”
.The details about when it has
to be thrown is given in the
appropriate methods

Package: com.wipro.bank.bean

Class Method and Variables Description

TransferBean Class

 private int transactionID Transaction Id

 private String
fromAccountNumber

AccountNumber from where money is
going to be transferred
*Maps to Account_Number field of
Transfer_tbl

 private String toAccountNumber AccountNumber to where money is
going to be transferred
*Maps to
Beneficiary_account_number field of
Transfer_tbl

 private Date dateOfTransaction Date on which transaction is taking
place-current Date [java.util.Date]

 private float amount Amount to be transferred

 setters & getters Should create the getter and setter
methods for all the attributes

mentioned in the class

Package: com.wipro.bank.dao

Class Method and Variables Description

BankDAO DAO class

 public int generateSequenceNumber() This method generates 4 digit
auto generated number using
transactionId_seq sequence

 public boolean validateAccount(String
accountNumber)

 Check account_tbl and return
true if account number is valid,
else return false.

 public float findBalance(String
accountNumber)

 Check account_tbl and return
balance if accountNumber is valid
else return -1

 public boolean
transferMoney(TransferBean transferBean)

 Insert the transferBean values
into the transfer_tbl.

 The transactionID is the value got
from generateSequnceNumber

 The transaction date is today’s
date

 On successful insertion return
true else return false

 public boolean updateBalance(String
accountNumber, float newBalance)

 Update account_tbl with the
newBalance for the given
accountNumber

 Return true for successful
updation and false if not

Package: com.wipro.bank.service

Class Method and Variables Description

BankMain Main class

 public static void main(String[] args)

The code that is needed to test your program goes here. A sample code is shown at the
end of the document.

 public String checkBalance(String accountNumber)

Steps to perform:

Invoke appropriate BankDAO methods and perform the following:

1. Validate the accountNumber
2. If valid, find the Balance for the given accountNumber
3. Return message in given format

For eg) If the balance returned by findBalance method is 10000 then the return
value is
BALANCE IS:10000.0
4. If AccountNumber is invalid
return the following message

 ACCOUNT NUMBER INVALID

 public String transfer(TransferBean transferBean)

Steps to perform:

Invoke appropriate BankDAO methods and perform the following:

1. If transferBean is null the function should return “INVALID”
2. Validate both the accountnumbers in the transferbean. In case if any of the

accountNumbers are invalid the function should
return INVALID ACCOUNT

3. If both the numbers are valid, check if the fromAccountNumber has
sufficientfunds to transfer

4. The function will throw “InsufficientFundsException” if the payer does not
have sufficient money. The exception will be caught in the same method itself.
If exception is caught the function should return “INSUFFICIENT FUNDS”
[Note: Do not use System.exit(0) while handling exception]

5. If the Payer has enough money, update account_tbl for both the account
numbers to perform the transfer operation (reduce the given amount from
fromAccountNumber and add the given amount into toAccountNumber] and
invoke the transferMoney function of the BankDAO class to include the
transaction detail in the transfer_tbl

6. If step5 was successful, the method would return “SUCCESS”.

Main Method:

You can write code in the main method and test all the above test cases. A sample
code of the main method to test the first test case is shown below for your reference.

public static void main(String[] args) {

// View Balance

System.out.println(bankMain.checkBalance("1234567890"));

// TransferMoney

TransferBean transferBean = new TransferBean();

transferBean.setFromAccountNumber("1234567890");
transferBean.setAmount(500);
transferBean.setToAccountNumber("1234567891");
transferBean.setDateOfTransaction(new java.util.Date());

System.out.println(bankMain.transfer(transferBean));

}

Test Cases:

Below is the actual set of test cases that the CPC test engine will run in the
background. Please ensure that the conditions mentioned in these test-cases are
handled by your class design.

1. Test for SequenceNumber Creation

2. Test for Balance checking with valid account number

3. Test for Balance checking with invalid account numnber

4. Test for successful transfer of funds

5. Test for transfer with low funds

6. Test for transfer with zero balance

7. Test for transfer with invalid payer account number

8. Test for transfer with invalid beneficiary account number

