

CS23403 -FULL STACK TECHNOLOGIES LAB

IV SEM N&Q Batch

Ex.No.1 10.01.2025

Install MEAN Stack in Windows /Ubuntu and run a simple application.

Installation of Mean in Windows:

MEAN is a software application stack made up of the following components:

MongoDB, a NoSQL database with support for server-side JavaScript execution

Express, a Node.js web application framework

Angular, a web application framework suitable for developing dynamic, single-page

applications

Node.js, an asynchronous event-driven framework suitable for building scalable network

applications

Valery Karpov invented the term "MEAN" and derived the term from the first letter of each

element.

Preparing Windows to run the MEAN

 Stack (MongoDB, Express, Angular, Node.js) applications is simple and only requires a couple

of things to be installed – namely Angular-CLI, MongoDB and Node.js.

Express runs on top of Node.js so it isn't installed directly on Windows, it's added

via NPM (Node Package Manager) when you run npm install for an application. The npm

install command looks at the dependencies section of the package.json file for application on

the MEAN stack and downloads all that is required, which should include Express.

Angular is an open-source JavaScript front-end web application framework mainly for developing

single-page applications. There’s some confusion regarding the name and version of Angular,

initially it was started as AngularJS framework (which is still v1), but later it was completely re-

written and released as Angular 2 in September 2016. In March 2017, Angular 2 was renamed

as Angular. Angular is similar in that it’s not installed directly on Windows and is added

via NPM.

Angular-CLI (Command Line Interface), however, will need to be installed globally

to create Angular projects and makes other development tasks easier. The Angular CLI helps us

to create projects, generate application and library code, and perform a variety of ongoing

development tasks such as testing, bundling, and deployment.

1. Install NodeJS on Windows

Download the latest stable release of NodeJS and install using all the default options.

Once the installation is complete, verify that the installation was successful by

asking NPM and Node for their version numbers.

// Check npm version

npm -version

// This should provide an output similar to

// 6.41

// Check node version

node -v

// This should provide an output similar to

// v10.15.1

If you see the version number for both, then the installation was completed successfully.

Follow these steps to install the Node.js on your Windows:

Step 1: Download Node.js Installer

Visit Our Dept Lab Web Server to download Node for Windows OS

http://192.168.1.200/node-v22.13.0-x64.msi

 Visit the official Node.js website to download the Node.js ‘.msi’ installer Download NodeJS

https://nodejs.org/
https://www.geeksforgeeks.org/nodejs
http://192.168.1.200/node-v22.13.0-x64.msi
https://nodejs.org/en/download/

 Download the Windows Installer based on your system architecture (32-bit or 64-bit)

The LTS (Long Term Support) version is recommended for most users since it is more stable,

whereas the Current version includes the latest features but may have more frequent updates.

Step 2: Run the Installer

 Locate the downloaded .msi file and double-click to run it.

 Follow the prompts in the setup wizard, accept the license agreement, and use the default

settings for installation.

 Select features to install such as:

o npm: to manage packages for Node.js applications

o Native modules: for building native C++ modules

Step 3: Finish Setup and Install Node.js and NPM

The installer may prompt you to “install tools for native modules”. Select “Install” to complete the

process.

Finish the setup

Wait for “Finish” to complete the setup.

Nodejs Installation

Step 4: Verify the Installation

Open Command Prompt or PowerShell > Check the installed versions by running these

commands:

 Type node -v and press Enter to check the Node.js version.

 Type npm -v and press Enter to check the npm version.

 Both commands should return version numbers, confirming successful installation.

C:\Users\Admin> node -v

Note:You can run the following command, to quickly update the npm

npm install npm --global // Updates the ‘CLI’ client

2. Install MongoDB on Windows

For this tutorial, we'll be installing the community edition, which is available for free

download. There's also an enterprise edition, but that requires a license, so we won't be dealing

with it here. At the time of publication, MongoDB 4.0.6 is the latest stable edition available for

download and installation.

Download MongoDB for Windows OS release from Our Dept Lab Web

Server : http://192.168.1.200/mongodb-windows-x86_64-8.0.4-signed.msi

Download the current stable release of MongoDB and install using the Complete setup type and all

the default options.

http://192.168.1.200/mongodb-windows-x86_64-8.0.4-signed.msi
https://www.mongodb.com/download-center

Create the MongoDB data directory

Create an empty folder at C:\data\db.

MongoDB requires a directory for storing all its data, the default directory is C:\data\db, you can

use a different directory if you prefer by specifying the --dbpath parameter when starting

the MongoDB server (below).

Start MongoDB Server on Windows

Start the MongoDB server by running mongod.exe from the command line, mongod.exe is located

in C:\Program Files\MongoDB\Server\[MONGODB VERSION]\bin. For example for version

4.0.6 the following command will start MongoDB:

"C:\Program Files\MongoDB\Server\3.2\bin\mongod"

Alternatively, you can add it to your system environment PATH to call it from anywhere. The

following command will append C:\Program Files\MongoDB\Server\[MONGODB

VERSION]\bin\mongod to the current PATH.

set PATH=%PATH%;"C:\Program Files\MongoDB\Server\[MONGODB VERSION]\bin\mongod"

After you change the path, close and re-open the console window. You can verify it was added by

running:

echo %PATH%

Once you run the mongod command, the output should look like the following if it's running:

2019-02-28T12:04:58.204-0500 I CONTROL [initandlisten] MongoDB starting : pid=6416 port=27017

dbpath=C:\data\db\ 64-bit host=YOUR_PC_NAME

2019-02-28T12:04:58.204-0500 I CONTROL [initandlisten] targetMinOS: Windows 7/Windows Server 2008 R2

2019-02-28T12:04:58.204-0500 I CONTROL [initandlisten] db version v4.0.5

…

2019-02-28T12:04:59.070-0500 I NETWORK [initandlisten] waiting for connections on port 27017

3. Install Angular-CLI on Windows

Step 1: After the code editor is installed, create a new project folder. Then go to the project folder

in command prompt/terminal and type below commands to create folder for frontend and backend

mkdir frontend

mkdir backend

Step 2: Navigate to the frontend folder using the command

cd frontend

Step 3: Initialize and run a Angular Project using the command

npm install -g @angular/cli

ng new my-angular-app

cd my-angular-app

ng serve --open

Step 4: Now navigate to the backend folder using the command

cd..

cd backend

(open in Windows 10) Control Panel\All Control Panel Items\System or accordance with the figure

step 1:

step 2 :

https://i.sstatic.net/YAFVZ.jpg
https://i.sstatic.net/wD6eZ.jpg

step3:

step4:

https://i.sstatic.net/B28gO.jpg
https://i.sstatic.net/C0TDw.jpg

step5: add missing ng path

C:\Users\{your username}\AppData\Roaming\npm

C:\Users\{yourusername}\AppData\Roaming\npm\node_modules\@angular\cli\bin

Here is new environment variable that you need

add: C:\Users\PK\AppData\Roaming\npm\node_modules\@angular\cli\bin

Finally, restart all opened command prompts and try again.

4.Installation of Express:

Express is a lightweight web application framework for node.js used to build the back-

end of web applications relatively fast and easily. Here we are going to write a simple

web app that will display a message on the browser.

Setup:

Install node: Follow the instruction given on this page if you have not installed the

node.

Check whether node and npm are installed or not by typing the following two

commands in the command prompt or terminal.

node --version

npm --version

Install Express: Make a working directory for the project .

STEP-1: Creating a directory for our project and make that our working directory.
$ mkdir gfg

https://www.geeksforgeeks.org/introduction-to-nodejs/
https://i.sstatic.net/FUPTb.jpg

$ cd gfg

STEP-2: Using npm init command to create a package.json file for our project.
$ npm init

This command describes all the dependencies of our project. The file will be updated

when adding further dependencies during the development process, for example when

you set up your build system.

Keep pressing enter and enter “yes/no” accordingly at the terminus line.

STEP-3: Installing Express

Now in your gfg(name of your folder) folder type the following command line:
$ npm install express --save

NOTE- Here “WARN” indicates the fields that must be entered in STEP-2.

STEP-4: Verify that Express.js was installed on your Windows:

To check that express.js was installed on your system or not, you can run the follow-

ing command line on cmd:
C:\Users\Admin\gfg\node_modules>npm --version express

The version of express.js will be displayed on successful installation.

Create a file ‘firstapp.js’ and write the code as shown below.

 javascript

const express = require('express');
app = express();

app.get('/', function (req, res) {
 res.type('text/plain');

 res.status(200);

 res.send('Hi');
});

app.listen(4000, function () {
 console.log('Listening.....');
});

Start the app by typing the following command:

node filename.js

This means that the server is waiting for a request to come.

Open any browser of your choice and go to “localhost:4000/” and you will see the

message “Hi”.

Explanation:

const express = require('express');

require() is a node.js function used to load the external modules. Here ‘express’ is that

external module.

app = express();

Here an object of an express module is created on which different methods will be

applied like get, set, post, use, etc.

app.get('/', function(req, res){

 res.type('text/plain');

 res.status(200);

 res.send('Hi');

});

get() is a function by which we add a route and a function that will get invoked when

any request will come. The function which we are passing to get(), sets attributes of the

response header by updating the status code as 200, mime-type as ‘text/plain’, and

finally sends the message ‘GeeksforGeeks’ to the browser.

app.listen(4000);

This is used to establish a server listening at port 4000 for any request.

6. Running Your Sample MEAN Application

Let's run the sample application to make sure that the system is functioning correctly. Use npm

start:dev to allow you to test your application in development mode.

npm start:dev

You may now access your MEAN application by visiting http://localhost:4000 in your favorite

browser.

Congrats! You've configured and run the sample application. This means you have a fully

functional MEAN stack on your server.

http://localhost:4000/

MEAN STACK COMPONENTS

1. MongoDB: Cross-platform Document-Oriented Database

MongoDB is a document-oriented NoSQL database system that provides high scalability, flexibility,

and performance. Unlike standard relational databases, MongoDB stores data in a JSON document

structure form. This makes it easy to operate with dynamic and unstructured data and MongoDB is

an open-source and cross-platform database System.

Why use MongoDB?

 Fast – Being a document-oriented database, easy to index documents. Therefore a faster

response.

 Scalability – Large data can be handled by dividing it into several machines.

 Use of JavaScript – MongoDB uses JavaScript which is the biggest advantage.

 Schema Less – Any type of data in a separate document.

 Data stored in the form of JSON.

 Simple Environment Setup – Its really simple to set up MongoDB.

 Flexible Document Model – MongoDB supports document-model(tables, schemas, columns

& SQL) which is faster and easier.

Creating a database: Simply done using a “use” command:

use database_name;

Creating a table: If the collection/table doesn’t exist then a new collection/table will be created:

db.createCollection("collection_name");

Inserting records into the collection:

db.collection_name.insert

(

 {

 "id" : 1,

 "Name" : "Klaus",

 "Department": "Technical",

 "Organization": "HI"

 }

);

Querying a document:

db.collection_name.find({Name : "Klaus"}).forEach(printjson);

2. Express: Back-End Framework:

Express is a small framework that sits on top of Node.js’s web server functionality to simplify its

APIs and add helpful new features. It makes it easier to organize your application’s functionality

with middle ware and routing. It adds helpful utilities to Node.js’s HTTP objects. It facilitates the

rendering of dynamic HTTP objects.

Why use Express?

 Asynchronous and Single-threaded.

 Efficient, fast & scalable

 Has the biggest community for Node.js

 Express promotes code reusability with its built-in router.

 Robust API

Create a new folder to start your express project and type below command in the command prompt

to initialize a package.json file. Accept the default settings and continue.

npm init

Then install express by typing the below command and hit enter. Now finally create a file inside the

directory named app.js.

npm install express --save

Now type in the following in app.js to create a sample server.

1

const express=require('express'),

2

http=require('http');

3

const hostname='localhost';

4

const port=8080;

5

const app=express();

6

7

app.use((req, res)=> {

8

 console.log(req.headers);

9

 res.statusCode=200;

10

 res.setHeader('Content-Type', 'text/html');

11

 res.end('<html><body><h1>This is a test server</h1></body></html>');

12

});

13

const sample_server=http.createServer(app);

14

15

sample_server.listen(port, hostname, ()=> {

16

 console.log(`Server running at http: //${hostname}:${port}/`);});

Then to start the server by running the below command

node app.js

Express

Terminal

Now you can open the browser and get the output of the running server.

Express

browser output

3. Angular JS: Open Source Frontend Framework

Angular is a Front-end Open Source Framework developed by Google Team. This framework is

revised in such a way that backward compatibility is maintained (If there is any breaking change

then Angular informs it very early). Angular projects are simple to create using Angular CLI

(Command Line Interface) tool developed by the Angular team.

Why use Angular.JS?

 It follows a structured MVC architecture, which simplifies code organization and

maintenance.

 With HTML templates and built-in directives, it simplifies complex UI tasks and data

binding.

 Changes made are reflected instantly in the UI and vice versa, which reduces manual

updates.

 It uses modular and reusable components, which enhances testability and maintainability.

 It utilizes TypeScript for strong typing and offers a powerful CLI for streamlined

development, testing, and deployment tasks.

You can start your angular application by first installing “angualar-cli” using npm or yarn.

npm install -g @angular/cli

After that you can create a new angular app by using.

ng new my-angular-app

Now to run the application use the following command

cd my-angular-app

ng serve --open

Terminal Output:

Angular terminal output

Browser Output:

4. Node JS: JS Runtime Environment

Node.js is used to write the Server Side Code in Javascript. One of the most important points is that

it is a runtime environment which runs the JavaScript code outside the Browser. It is cross-platform

and Open Source. NodeJS is not a framework and it’s not a programming language. Node.js is used

to build back-end services like APIs like Web App or Mobile App.

Why use Node.JS?

 Open-source JavaScript Runtime Environment

 Single threading – Follows a single-threaded model.

 Data Streaming

 Fast – Built on Google Chrome’s JavaScript Engine, Node.js has a fast code execution.

 Highly Scalable

Initialize a Node.js application by typing running the below command in the command

window. Accept the standard settings.

npm init

Create a file named app.js.

Example: A basic Node.js example to compute the perimeter & area of a rectangle.

1

let rectangle= {

2

 perimeter: (x, y)=> (2*(x+y)), area: (x, y)=> (x*y)

3

};

4

5

function Rectangle(l, b) {

6

 console.log("A rectangle with l = " +

7

 l + " and b = " + b);

8

9

 if (l <=0 || b <=0) {

10

 console.log("Error! Rectangle's length & "

11

 + "breadth should be greater than 0: l = "

12

 + l + ", and b = " + b);

13

 }

14

15

 else {

16

 console.log("Area of the rectangle: "

17

 + rectangle.area(l, b));

18

 console.log("Perimeter of the rectangle: "

19

 + rectangle.perimeter(l, b));

20

 }

21

}

22

23

Rectangle(1, 8);

24

Rectangle(3, 12);

25

Rectangle(-6, 3);

Run the node application by running the below command in the command window.

node app.js

Output:

Node terminal Output

npm install -g @angular/cli

After that you can create a new angular app by using.

ng new my-angular-app

Now to run the application use the following command

cd my-angular-app

ng serve --open

Terminal Output:

