CS1306 - MACHINE LEARNING - WEEK 3

Question 1:

For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

CANDIDATE- ELIMINTION algorithm using version spaces Training Examples:

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Question 2:

For a given set of training data examples stored in a .CSV file, implement and demonstrate the Find-S algorithm

Example	Size	Color	Shape	Class/Label
1	Big	Red	Circle	No
2	Small	Red	Triangle	No
3	Small	Red	Circle	Yes
4	Big	Blue	Circle	No
5	Small	Blue	Circle	Yes

Question 3:

Implement Candidate Elimination and Find S algorithm and find the difference between the hypotheses generated.

Step 1:

example	citations	size	inLibrary	price	editions	buy
1	some	small	no	affordable	many	no
2	many	big	no	expensive	one	yes
3	some	big	always	expensive	few	no
4	many	medium	no	expensive	many	yes
5	many	\mathbf{small}	no	affordable	many	yes

CANDIDATE-ELIMINATION Learning Algorithm

The CANDIDATE-ELIMINTION algorithm computes the version space containing all hypotheses from H that are consistent with an observed sequence of training examples.

- 1. Initialize G to the set of maximally general hypotheses in H
- 2.Initialize S to the set of maximally specific hypotheses in H
- 3. For each training example d, do
- If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - Remove s from S
 - Add to S all minimal generalizations h of s such that
 - h is consistent with d, and some member of G is more general than h
 - Remove from S any hypothesis that is more general than another hypothesis in S
- If d is a negative example
 - Remove from S any hypothesis inconsistent with d
 - For each hypothesis g in G that is not consistent with d
 - Remove g from G

- Add to G all minimal specializations h of g such that
- h is consistent with d, and some member of S is more specific than h
- Remove from G any hypothesis that is less general than another hypothesis in G

Algorithmic steps:

Initially : G = [[?, ?, ?, ?, ?], [?, ?, ?, ?, ?], [?, ?, ?, ?, ?], [?, ?, ?, ?, ?], [?, ?, ?, ?], [?, ?, ?, ?], [?, ?, ?, ?], [?, ?, ?, ?]]S = [Null, Null, Null, Null, Null]

For instance 1 : <'sunny','warm','normal','strong','warm ','same'> and positive output. G1 = G S1 = ['sunny','warm','normal','strong','warm ','same']

For instance 2 : <'sunny','warm','high','strong','warm ','same'> and positive output. G2 = G S2 = ['sunny','warm',?,'strong','warm ','same']

- For instance 3 : <'rainy','cold','high','strong','warm ','change'> and negative output. G3 = [['sunny', ?, ?, ?, ?], [?, 'warm', ?, ?, ?], [?, ?, ?, ?, ?], [?, ?, ?, ?, ?], [?, ?, ?, ?], [?, ?, ?, ?, ?], [?, ?, ?, ?], [S3 = S2
- For instance 4 : <'sunny','warm','high','strong','cool','change'> and positive output. G4 = G3 S4 = ['sunny','warm',?,'strong', ?, ?]

At last, by synchronizing the G4 and S4 algorithm produce the output.

G = [['sunny', ?, ?, ?, ?], [?, 'warm', ?, ?, ?] S = ['sunny', 'warm', ?, 'strong', ?, ?]

Instruction:

The training examples should be saved in csv file format. Enjoysport.csv and save in the same folder where this python file is saved .