
Floating-Point Page 1

Floating-Point

 Objectives

After completing this lab, you will:

 Understand Floating-Point Number Representation (IEEE 754 Standard)

 Understand the MIPS Floating-Point Unit

 Write Programs using the MIPS Floating-Point Instructions

 Write functions that have floating-point parameters and return floating-point results

Floating-Point Number Representation

Floating-point numbers have the following representation:

S E = Exponent F = Fraction

The Sign bit S is zero (positive) or one (negative).

The Exponent field E is 8 bits for single-precision and 11 bits for double-precision. The exponent
field is biased. The Bias is 127 for single-precision and 1023 for double-precision.

The Fraction field F is 23 bits for single-precision and 52 bits for double-precision. Floating-point
numbers are normalized (except when E is zero). There is an implicit 1. (not stored) before the

fraction F. Therefore, the value of a normalized floating-point number is:

Value = (1.F)2 × 2 E – Bias

The MARS simulator has a floating-point representation tool that illustrates single-precision

floating-point numbers. Go to Tools Floating Point Representation, and open the window,

shown in Figure 1.

Now use the tool to check the binary format and the decimal value of floating-point numbers.

For example, the decimal value of: 0 10000001 10110100000000000000000 is 6.75.

Similarly, the 32-bit representation of: -2.7531 is 1 10000000 01100000011001011001010.

Floating-Point Page 2

Figure 1: Floating-Point Representation tool supported by MARS

 MIPS Floating-Point Registers

The floating-point unit (called coprocessor 1) has 32 floating-point registers. These registers are

numbered as $f0, $f1, …, $f31. Each register is 32 bits wide. Thus, each register can hold one

single-precision floating-point number. How can we use these registers to store 64-bit double-
precision floating-point numbers? The answer is that the 32 single-precision registers are grouped
into 16 double-precision registers. The double-precision number is stored in an even-odd pair of
registers, but we only refer to the even-numbered register. For example, when we store a double-

precision number in $f0, it is actually stored in registers $f0 and $f1.

In addition, there are 8 condition flags, numbered from 0 to 7. These condition flags are used by
floating-point compare and branch instructions. These are shown in Figure 2.

Floating-Point Page 3

Figure 2: MIPS Floating-Point Registers and Condition Flags

 MIPS Floating-Point Instructions

The FPU supports several instructions including floating-point load and store, floating-point
arithmetic operations, floating-point data movement instructions, convert, and branch instructions.
We start this section with the floating-point load and store instructions. These instructions load into
or store a floating-point register. However, they use the same base-displacement addressing mode
used with integer instructions. Notice that the base address register is an integer (not a floating-
point) register.

Instruction Example Meaning

lwc1 or l.s lwc1 $f1,0($sp) Load a word from memory to a single-precision

floating-point register: $f1 = MEM[$sp]

ldc1 or l.d ldc1 $f2,8($t1) Load a double word from memory to a double-

precision register: $f2 = MEM[$t1+8]

Floating-Point Page 4

Instruction Example Meaning

swc1 or s.s swc1 $f5,4($t2) Store a single-precision floating-point register in
memory: MEM[$t2+4] = $f5

sdc1 or s.d sdc1 $f6,16($t3) Store a double-precision floating-point register in
memory: MEM[$t3+16] = $f6

The floating-point arithmetic instructions are listed next. The .s extension is used for single-

precision arithmetic instructions, while the .d is used for double-precision instructions.

Instruction Example Meaning
add.s add.s $f0,$f2,$f4 $f0 = $f2 + $f4 (single-precision)

add.d add.d $f0,$f2,$f4 $f0 = $f2 + $f4 (double-precision)

sub.s sub.s $f0,$f2,$f4 $f0 = $f2 - $f4 (single-precision)

sub.d sub.d $f0,$f2,$f4 $f0 = $f2 - $f4 (double-precision)

mul.s mul.s $f0,$f2,$f4 $f0 = $f2 × $f4 (single-precision)

mul.d mul.d $f0,$f2,$f4 $f0 = $f2 × $f4 (double-precision)

div.s div.s $f0,$f2,$f4 $f0 = $f2 / $f4 (single-precision)

div.d div.d $f0,$f2,$f4 $f0 = $f2 / $f4 (double-precision)

sqrt.s sqrt.s $f0, $f2 Square root (single-precision)

sqrt.d sqrt.d $f0, $f2 Square root (double-precision)

abs.s abs.s $f0, $f2 Absolute value (single-precision)

abs.d abs.d $f0, $f2 Absolute value (double-precision)

neg.s neg.s $f0, $f2 Negative value (single-precision)

neg.d neg.d $f0, $f2 Negative value (double-precision)

The data movement instructions move data between general-purpose and floating-point registers, or
between floating-point registers.

Instruction Example Meaning

mfc1 mfc1 $t0, $f2 Move data from a floating-point register to a general-
purpose register.

mtc1 mfc1 $t0, $f2 Move data from a general-purpose register to a
floating-point register.

mov.s mov.s $f0, $f1 Move single-precision data between two floating-
point registers.

mov.d mov.d $f0, $f2 Move double-precision data between two floating-

point registers (move even-odd pair of registers).

Floating-Point Page 5

The convert instructions convert the format of data in floating-point registers. Three data formats

are supported: .s = single-precision float, .d = double-precision, and .w = integer word.

Instruction Example Meaning

cvt.s.w cvt.s.w $f0,$f2 $f0 = convert $f2 from word to single-precision

cvt.s.d cvt.s.d $f0,$f2 $f0 = convert $f2 from double to single-precision

cvt.d.w cvt.d.w $f0,$f2 $f0 = convert $f2 from word to double-precision

cvt.d.s cvt.d.s $f0,$f2 $f0 = convert $f2 from single to double-precision

cvt.w.s cvt.w.s $f0,$f2 $f0 = convert $f2 from single-precision to word

cvt.w.d cvt.w.d $f0,$f2 $f0 = convert $f2 from double-precision to word

ceil.w.s ceil.w.s $f0,$f2 $f0 = Integer ceiling of single-precision float in $f2

ceil.w.d ceil.w.d $f0,$f2 $f0 = Integer ceiling of double-precision float in $f2

floor.w.s floor.w.s $f0,$f2 $f0 = Integer floor of single-precision float in $f2

floor.w.d floor.w.d $f0,$f2 $f0 = Integer floor of double-precision float in $f2

trunc.w.s trunc.w.s $f0,$f2 $f0 = Truncate single-precision float in $f2

trunc.w.d trunc.w.d $f0,$f2 $f0 = Truncate double-precision float in $f2

The floating-point compare instructions compare floating-point registers for equality, less than, and

less than or equal. The FP compare instructions set the condition flags 0 to 7 to true (1) or false(0).

Instruction Example Meaning

c.eq.s c.eq.s $f2,$f3 if ($f2 == $f3) set flag 0 to true else false

c.eq.d c.eq.s 3,$f4,$f6 Compare equal double-precision. Result in flag 3

c.lt.s c.eq.s 4,$f5,$f8 if ($f5 < $f8) set flag 4 to true else false

c.lt.d c.lt.d 7,$f4,$f6 Compare less-than double. Result in flag 7

c.le.s c.le.s $f10,$f11 if ($f10 <= $f11) set flag 0 to true else false

c.le.d c.le.d $f14,$f16 Compare less or equal double. Result in flag 0

Floating-Point Page 6

The floating-point branch instructions (bc1t and bc1f) branch to the target address based on the
value of the specified condition flag (true or false).

Instruction Example Meaning

bc1t bc1t label Branch to label if condition flag 0 is true

bc1t bc1t 1, label Branch to label if condition flag 1 is true

bc1f bc1f label Branch to label if condition flag 0 is false

bc1f bc1f 4, label Branch to label if condition flag 4 is false

 System Call Services for Floating-Point Numbers

The MARS tool provides the following syscall service numbers (passed in $v0) to print and read
single-precision and double-precision floating-point numbers:

Service $v0 Arguments Result

Print Float 2 $f12 = float to print

Print Double 3 $f12 = double to print

Read Float 6 Float is returned in $f0

Read Double 7 Double is returned in $f0

 MIPS Floating-Point Register Usage Convention

Compilers follow the MIPS register usage convention when translating functions and procedures
into MIPS assembly-language code. The following table shows the MIPS software convention for

floating-point registers. Not following the MIPS software usage convention can result in serious
bugs when passing parameters, getting results, or using registers across function calls.

Registers Usage

$f0 - $f3 Floating-point procedure results

$f4 - $f11 Temporary floating-point registers, NOT preserved across procedure calls

$f12 - $f15 Floating-point parameters, NOT preserved across procedure calls. Additional
floating-point parameters should be pushed on the stack.

$f16 - $f19 More temporary registers, NOT preserved across procedure calls.

$f20 - $f31 Saved floating-point registers. Should be preserved across procedure calls.

Floating-Point Page 7

 In-Lab Tasks

1. Convert by hand the number -123456789 into its 32-bit single-precision binary representation,
and then use the floating-point representation tool presented in Section 9.2 to verify your
answer. Show your work for a full mark.

2. Convert by hand the floating-point number 1 10010100 10011000001100000000000
(shown in binary) into its corresponding decimal value, and then use the floating-point
representation tool presented in Section 9.2 to verify your answer. Show your work for a full
mark.

3. Trace the following program by hand to determine the values of registers $f0 thru $f9. Notice

that array1 and array2 have the same elements, but in a different order. Comment on the

sums of array1 and array2 elements computed in registers $f4 and $f9, respectively. Now
use the MARS tool to trace the execution of the program and verify your results. What
conclusion can be made from this exercise?

.data
array1: .float 5.6e+20, -5.6e+20, 1.2
array2: .float 1.2, 5.6e+20, -5.6e+20

.text
la $t0, array1
lwc1 $f0, 0($t0)
lwc1 $f1, 4($t0)
lwc1 $f2, 8($t0)
add.s $f3, $f0, $f1
add.s $f4, $f2, $f3
la $t1, array2
lwc1 $f5, 0($t1)
lwc1 $f6, 4($t1)
lwc1 $f7, 8($t1)
add.s $f8, $f5, $f6
add.s $f9, $f7, $f8

4. Write an interactive program that inputs an integer sum and an integer count, computes, and

displays the average = (float) sum / (float) count as a single-precision floating-

point number. Hint: use the proper convert instruction to convert sum and count from integer

word into single-precision float.

