
11/28/2019 MIPS Instruction Set — ECS Networking

https://ecs-network.serv.pacific.edu/past-courses/2014-fall-ecpe-170/tutorials/mips-instruction-set 1/6

MIPS Instruction Set
Contents

1. Arithmetic Instructions
2. Logical
3. Data Transfer
4. Conditional Branch
5. Comparison
6. Unconditional Jump
7. System Calls
8. Assembler Directives
9. Registers

This is a **partial list** of the available MIPS32 instructions, system calls, and assembler
directives. For more MIPS instructions, refer to the Assembly Programming section on the
class Resources page.

In all examples, $1, $2, $3 represent registers. For class, you should use the register names, not
the corresponding register numbers.

 

Arithmetic Instructions

Instruction Example Meaning Comments

add add $1,$2,$3 $1=$2+$3

subtract sub $1,$2,$3 $1=$2-$3

add immediate addi
$1,$2,100 $1=$2+100 "Immediate" means a constant

number

add unsigned addu
$1,$2,$3 $1=$2+$3

Values are treated as unsigned
integers,
not two's complement integers

subtract unsigned subu
$1,$2,$3 $1=$2-$3

Values are treated as unsigned
integers,
not two's complement integers

add immediate
unsigned

addiu
$1,$2,100 $1=$2+100

Values are treated as unsigned
integers,
not two's complement integers

Multiply (without
overflow) mul $1,$2,$3 $1=$2*$3 Result is only 32 bits!

Multiply mult $2,$3 $hi,$low=$2*$3

Upper 32 bits stored in special
register hi
Lower 32 bits stored in special
register lo

https://ecs-network.serv.pacific.edu/past-courses/2014-fall-ecpe-170/resources


11/28/2019 MIPS Instruction Set — ECS Networking

https://ecs-network.serv.pacific.edu/past-courses/2014-fall-ecpe-170/tutorials/mips-instruction-set 2/6

Divide div $2,$3 $hi,$low=$2/$3 Remainder stored in special
register hi
Quotient stored in special
register lo

 

Logical

Instruction Example Meaning Comments

and and $1,$2,$3 $1=$2&$3 Bitwise AND

or or $1,$2,$3 $1=$2|$3 Bitwise OR

and immediate andi $1,$2,100 $1=$2&100 Bitwise AND with immediate value

or immediate or $1,$2,100 $1=$2|100 Bitwise OR with immediate value

shift left logical sll $1,$2,10 $1=$2<<10 Shift left by constant number of bits

shift right logical srl $1,$2,10 $1=$2>>10 Shift right by constant number of bits

 

Data Transfer

Instruction Example Meaning Comments

load word lw
$1,100($2) $1=Memory[$2+100] Copy from memory to register

store word sw
$1,100($2) Memory[$2+100]=$1 Copy from register to memory

load upper
immediate lui $1,100 $1=100x2^16 Load constant into upper 16 bits. 

Lower 16 bits are set to zero.

load address la
$1,label $1=Address of label

Pseudo-instruction (provided by
assembler, not processor!)
Loads computed address of label (not
its contents) into register

load immediate li $1,100 $1=100
Pseudo-instruction (provided by
assembler, not processor!)
Loads immediate value into register

move from hi mfhi $2 $2=hi Copy from special register hi to
general register

move from lo mflo $2 $2=lo Copy from special register lo to
general register

move move $1,$2 $1=$2 Pseudo-instruction (provided by
assembler, not processor!)
Copy from register to register.



11/28/2019 MIPS Instruction Set — ECS Networking

https://ecs-network.serv.pacific.edu/past-courses/2014-fall-ecpe-170/tutorials/mips-instruction-set 3/6

Variations on load and store also exist for smaller data sizes:

16-bit halfword: lh and sh
8-bit byte: lb and sb

 

Conditional Branch

All conditional branch instructions compare the values in two registers together. If the comparison
test is true, the branch is taken (i.e. the processor jumps to the new location). Otherwise, the
processor continues on to the next instruction.

Instruction Example Meaning Comments

branch on equal beq
$1,$2,100

if($1==$2) go to
PC+4+100

Test if registers are
equal

branch on not equal bne
$1,$2,100

if($1!=$2) go to
PC+4+100

Test if registers are not
equal

branch on greater than bgt
$1,$2,100

if($1>$2) go to
PC+4+100 Pseduo-instruction

branch on greater than or
equal

bge
$1,$2,100

if($1>=$2) go to
PC+4+100 Pseduo-instruction

branch on less than blt
$1,$2,100

if($1<$2) go to
PC+4+100 Pseduo-instruction

branch on less than or
equal

ble
$1,$2,100

if($1<=$2) go to
PC+4+100 Pseduo-instruction

Note 1: It is much easier to use a label for the branch instructions instead of an absolute number.
 For example: beq $t0, $t1, equal.  The label "equal" should be defined somewhere else in
the code.

Note 2: There are many variations of the above instructions that will simplify writing
programs! Consult the Resources for further instructions, particularly H&P Appendix A.

 

Comparison

Instruction Example Meaning Comments

set on less than slt
$1,$2,$3

if($2<$3)$1=1;
else $1=0

Test if less than.
If true, set $1 to 1. Otherwise,
set $1 to 0.

set on less than
immediate

slti
$1,$2,100

if($2<100)$1=1;
else $1=0

Test if less than.
If true, set $1 to 1. Otherwise,
set $1 to 0.

https://ecs-network.serv.pacific.edu/past-courses/2014-fall-ecpe-170/resources


11/28/2019 MIPS Instruction Set — ECS Networking

https://ecs-network.serv.pacific.edu/past-courses/2014-fall-ecpe-170/tutorials/mips-instruction-set 4/6

Note: There are many variations of the above instructions that will simplify writing programs!
Consult the Resources for further instructions, particularly H&P Appendix A.

 

Unconditional Jump

Instruction Example Meaning Comments

jump j 1000 go to address 1000 Jump to target address

jump
register jr $1 go to address stored in $1 For switch, procedure return

jump and
link

jal
1000

$ra=PC+4; go to address
1000

Use when making procedure call.
This saves the return address in
$ra

Note: It is much easier to use a label for the jump instructions instead of an absolute number.
 For example: j loop.  That label should be defined somewhere else in the code.

 

System Calls

The SPIM simulator provides a number of useful system calls.  These are simulated, and do not
represent MIPS processor instructions. In a real computer, they would be implemented by the
operating system and/or standard library.

System calls are used for input and output, and to exit the program.  They are initiated by the
syscall instruction. In order to use this instruction, you must first supply the appropriate
arguments in registers $v0, $a0-$a1, or $f12, depending on the specific call desired. (In other
words, not all registers are used by all system calls). The syscall will return the result value (if
any) in register $v0 (integers) or $f0 (floating-point).

Available syscall services in SPIM:

Service Operation
Code 

(in
$v0)

Arguments Results

print_int Print integer number (32 bit) 1 $a0 = integer to be
printed None

print_float Print floating-point number (32 bit) 2 $f12 = float to be
printed None

print_double Print floating-point number (64 bit) 3 $f12 = double to be
printed None

print_string Print null-terminated character string 4 $a0 = address of
string in memory None

read_int Read integer number from user 5 None
Integer
returned
in $v0

https://ecs-network.serv.pacific.edu/past-courses/2014-fall-ecpe-170/resources


11/28/2019 MIPS Instruction Set — ECS Networking

https://ecs-network.serv.pacific.edu/past-courses/2014-fall-ecpe-170/tutorials/mips-instruction-set 5/6

read_float Read floating-point number from
user

6 None Float
returned
in $f0

read_double Read double floating-point number
from user 7 None

Double
returned
in $f0

read_string Works the same as Standard C
Library fgets() function. 8

$a0 = memory
address of string
input buffer
$a1 = length of
string buffer (n)

None

sbrk

Returns the address to a block of
memory containing n additional
bytes. 
(Useful for dynamic memory
allocation)

9 $a0 = amount address
in $v0

exit Stop program from running 10 None None

print_char Print character 11 $a0 = character to
be printed None

read_char Read character from user 12 None
Char
returned
in $v0

exit2 Stops program from running and
returns an integer 17 $a0 = result (integer

number) None

Notes:

The print_string service expects the address to start a null-terminated character string.
The directive .asciiz creates a null-terminated character string.
The read_int, read_float and read_double services read an entire line of input up to and
including the newline character.
The read_string service has the same semantics as the C Standard Library routine fgets().

The programmer must first allocate a buffer to receive the string
The read_string service reads up to n-1 characters into a buffer and terminates the
string with a null character.
If fewer than n-1 characters are in the current line, the service reads up to and
including the newline and terminates the string with a null character.

There are a few additional system calls not shown above for file I/O:  open, read, write,
close (with codes 13-16)

 

Assembler Directives

An assembler directive allows you to request the assembler to do something when converting
your source code to binary code.

Directive Result



11/28/2019 MIPS Instruction Set — ECS Networking

https://ecs-network.serv.pacific.edu/past-courses/2014-fall-ecpe-170/tutorials/mips-instruction-set 6/6

.word w1, ..., wn Store n 32-bit values in successive memory words

.half h1, ..., hn Store n 16-bit values in successive memory words

.byte b1, ..., bn Store n 8-bit values in successive memory words

.ascii str Store the ASCII string str in memory.
Strings are in double-quotes, i.e. "Computer Science"

.asciiz str Store the ASCII string str in memory and null-terminate it
Strings are in double-quotes, i.e. "Computer Science"

.space n Leave an empty n-byte region of memory for later use

.align n Align the next datum on a 2^n byte boundary.
For example, .align 2 aligns the next value on a word boundary

 

Registers

MIPS has 32 general-purpose registers that could, technically, be used in any manner the
programmer desires. However, by convention, registers have been divided into groups and used
for different purposes. Registers have both a number (used by the hardware) and a name (used
by the assembly programmer).

This table omits special-purpose registers that will not be used in ECPE 170.

Register
Number

Register 
Name Description

0 $zero The value 0

2-3 $v0 - $v1 (values) from expression evaluation and function results

4-7 $a0 - $a3 (arguments) First four parameters for subroutine

8-15, 24-25 $t0 - $t9 Temporary variables

16-23 $s0 - $s7 Saved values representing final computed results

31 $ra Return address

 

Based on:

http://labs.cs.upt.ro/labs/so2/html/resources/nachos-doc/mipsf.html
http://logos.cs.uic.edu/366/notes/mips%20quick%20tutorial.htm
http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html

http://labs.cs.upt.ro/labs/so2/html/resources/nachos-doc/mipsf.html
http://logos.cs.uic.edu/366/notes/mips%20quick%20tutorial.htm
http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html

